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ABSTRACT 
 
In this paper, we demonstrate that the inter-period correlation of epsilon (𝝆𝝐) is an essential 
component of ground motion simulation validation when the simulations are used in fragility or 
risk applications. To perform this demonstration, we generate large suites of scenario ground 
motion simulations using the point source stochastic method. Two compatible suites of simulations 
are developed for the selected ground motion levels; one suite without any imposed inter-period 
correlation, and one with FAS 𝝐 sampled from a multivariate normal distribution with covariance 
specified by our empirical model for 𝝆𝝐 of FAS. Both suites of simulations are inverse transformed 
to the time domain and applied in dynamic nonlinear structural analyses, using the open source 
finite-element platform, OpenSees. We evaluate the response using nonlinear structural models, 
and develop structural fragility curves. Finally, we illustrate how the effect of 𝝆𝝐 propagates 
through to seismic risk calculations by combining the fragility curves with generic seismic hazard 
curves for California. The character of 𝝆𝝐 is found to have a meaningful impact on structural 
response variability, and therefore seismic risk. The suite of simulations with the imposed 𝝆𝝐 leads 
to a larger variability in structural response, flatter structural fragility curves, and higher seismic 
risk, compared with the simulations generated without the appropriate 𝝆𝝐. This conclusion 
reinforces the importance of validating 𝝆𝝐 in ground motion simulations prior to their use in 
fragility or risk applications.  
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 In this paper, we demonstrate that the inter-period correlation of epsilon (𝝆𝝐) is an essential 

component of ground motion simulation validation, particularly when the simulations are used in 
structural fragility or risk applications. To perform this demonstration, we generate large suites of 
scenario ground motion simulations using the point source stochastic method. Two compatible 
suites of simulations are developed for each selected ground motion level; one suite without any 
imposed inter-period correlation, and a second with Fourier amplitude spectra (FAS) epsilon 
sampled from a multivariate normal distribution with covariance specified by our empirical model 
for 𝝆𝝐 of FAS. Both suites of simulations are inverse transformed to the time domain and applied in 
dynamic nonlinear structural analyses, using the open source finite-element platform, OpenSees. 
We evaluate the response using nonlinear structural models, and develop structural fragility curves. 
Finally, we illustrate how the effect of 𝝆𝝐 propagates through to seismic risk calculations by 
combining the fragility curves with generic seismic hazard curves for California. The character of 
𝝆𝝐 is found to have a meaningful impact on structural response variability, and therefore seismic 
risk. The suite of simulations with the imposed 𝝆𝝐 leads to a larger variability in structural response, 
flatter structural fragility curves, and higher seismic risk, compared with the simulations generated 
without the appropriate 𝝆𝝐. This conclusion reinforces the importance of validating 𝝆𝝐 in ground 
motion simulations prior to their use in fragility or risk applications. 

 
 

1. Introduction 
 
Residuals from empirical ground-motion models (GMMs, also known as ground-motion 
prediction equations, GMPEs) are typically partitioned into between-event residual (𝛿𝐵), and 
within-event residuals (𝛿𝑊), following the notation of Al Atik et al., (2010). The between-event 
residual is the average difference between the observed IM from a specific earthquake and the 
median spectral acceleration predicted by the GMM. The within-event residual (𝛿𝑊) is the 
difference between the spectral acceleration at a specific site for a given earthquake and the median 
spectral acceleration predicted by the GMM plus 𝛿𝐵. The residual components 𝛿𝐵 and 𝛿𝑊 are 
zero-mean, independent, normally distributed random variables with standard deviations 𝜏 and 𝜙, 
respectively [1]. GMM residuals are converted to epsilon (𝜖) by normalizing the residuals by their 
standard deviation. Epsilon of between-event residuals (𝜖)) and epsilon of within-event residuals 
(𝜖*) are the individual residual components normalized by their respective standard deviations. 
Because of the normalization, the random variables 𝜖) and 𝜖* are well represented by a standard-
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normal distribution (mean=0, variance=1). If the total residual is used, then the resulting 𝜖+,+-. 
will, in general, not have zero mean due to the uneven sampling of earthquakes in the data set. In 
this paper, we work with epsilon of the within-event residuals, because the within-event residual 
standard deviation controls the total correlation and they have zero mean. For notational brevity, 
the ‘W’ subscript is dropped and the term 𝜖 refers to within-event epsilon herein. 
 
The values of 𝜖 at neighboring periods (𝑇) are generally correlated. For example, if a ground 
motion is stronger than average at 𝑇=1.0 s, then it is likely to also be stronger than expected at 
adjacent periods, e.g. 𝑇=0.8 s or 𝑇=1.2 s.  However, for a widely-spaced period pair (e.g. 𝑇=10.0 
s compared with 𝑇=1.0 s) one might expect that the relative magnitude of the within-event residual 
at 𝑇=10.0 s behaves independently of the 𝑇=1.0 s ordinate. The inter-period correlation of 𝜖 
quantifies this probabilistic relationship of 𝜖 values between periods. 
 
The correlation coefficient of two random variables is a measure of their linear dependence. In this 
case, 𝜖 calculated from a large set of ground motions at different frequencies (𝑓) are random 
variables. The correlation coefficient between 𝜖(𝑓2) and 𝜖(𝑓4) can be estimated using a maximum 
likelihood estimator, the Pearson-product-moment correlation coefficient, 𝜌 [2]. The correlation 
coefficient for a sample of 𝜖 at frequencies 𝑓2 and 𝑓4 is given by Eq. 1: 
 

𝜌6 78 ,6 7: =
𝑐𝑜𝑣 𝜖 𝑓2 , 𝜖 𝑓4
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where 𝑐𝑜𝑣 is the covariance, 𝜎 is the standard deviation, 𝑛 is the total number of observations, 𝑖 is 
the 𝑖th observation of 𝜖, and 𝜖 𝑓2  and 𝜖 𝑓4  are the sample means of 𝜖 at frequencies 𝑓2 and 𝑓4, 
respectively. In our applications, 𝜖 is equal to zero because we use within-event residuals, 
indicating that the GMM is centered. The relation for 𝜌6 78 ,6 7:  given in Eq. 1 is reciprocal; the 
correlation coefficient between two given frequencies is the same regardless of which frequency 
is the conditioning frequency.  
 
Using a database of within-event residuals, the calculation of 𝜌6 78 ,6 7:  can be repeated for every 
frequency pair of interest. Fig. 1 shows a graphical representation of this step at three example 
frequency pairs. The resulting correlation coefficients for each pair of frequencies can be saved as 
tables (e.g. [3], [4], [5], [6], [7]), or can be empirically modeled. For modern GMMs, models of 
the correlation of 𝜖 are commonly created for PSA (e.g. [8], [9], [10], [11], [12], [3]). Recently, 
correlation models for 𝜖 from Fourier amplitude spectra (FAS) have also been developed (e.g. 
[13], [14]). 
 
 
 
 



   
Figure 1. 𝝐 values at pairs of frequencies calculated from a database of ground motions, exhibiting 

the correlation dependent on frequency spacing. Left: 𝒇𝟏	= 0.2 Hz and 𝒇𝟐	= 5.0 Hz. 
Middle: 𝒇𝟏	= 0.2 Hz and 𝒇𝟐	= 0.3 Hz. Right: 𝒇𝟏	= 0.2 Hz and 𝒇𝟐	= 0.2 Hz 

 
Physical Meaning and Relevance of 𝝆𝝐 
 
The physical meaning of 𝜌6 may not be commonly known to earthquake engineers. The parameter 
𝜖 itself is an indicator of the peaks and troughs at a given frequency in a spectrum. Since 𝜌6 is a 
measure of the linear dependence of 𝜖 between two frequencies, 𝜌6 characterizes the relative width 
of these extrema. For example, very high 𝜌6 (values close to one) over broad frequency pairs 
indicate wide peaks and troughs in the spectra; leading to smoother undulating spectra. Conversely, 
very low 𝜌6 (values close to zero) between neighboring frequency pairs indicate very narrow peaks 
and troughs; leading to ‘noisy’ looking spectra.  
 
The generic term ‘spectra’ can refer to either PSA or FAS. PSA spectra are the peak response from 
a single degree of freedom oscillator system. PSA spectra are influenced by a range of frequencies, 
and the breadth of that range is dependent on the oscillator period [14]. The FAS provides a more 
direct representation of the frequency content of the ground motions, and since the Fourier 
transform is a linear operation, the FAS is a much more straightforward representation of the 
ground motion. This simpler behavior makes the FAS preferable over PSA for incorporating inter-
period correlation into numerical methods for ground-motion simulations, and this is the IM we 
adopt. 
 
Since 𝜌6 is a measure of the width of spectral peaks, it has relevance in dynamic structural 
response. For linear response, a structure will be sensitive to the frequency content over a range of 
frequencies about the natural frequency of the structures. For the uncorrelated case, if the 𝜖 value 
at the natural frequencies is a high positive value (corresponding to a peak), the values of 𝜖 at the 
nearby frequencies will be randomly high or low so the response of the structure will increase a 
small factor; however, for the correlated case, the values of 𝜖 at the nearby frequencies will tend 
to also be positive values so the response of the structure will increase a larger factor. During 
nonlinear seismic response, the effect of the correlation can be even greater than for linear 
response. For nonlinear response, structures can experience softening characterized by elongation 
of their natural vibration period ([15], [16]). This occurs when damage to the structural elements 
leads to large strains which reduce the effective stiffness and effective damping. As a structure 
softens and its effective fundamental period (a first order indicator of seismic damage) increases 



and the response will depend on if the structure is softening into a peak or a trough in the frequency 
content. For the correlated case, the chance of softening into a peak or a trough will depend on the 
breadth of a ground motion spectral peak or trough, thereby affecting the structural response. The 
aggregate effect is the variability in structural response is higher for ground motions with realistic 
𝜌6 than for ground motions with unrealistically low 𝜌6, as we demonstrate in the following sections 
of this paper. 
 
Paper Organization 
 
In this paper, we demonstrate that the characteristics of the correlation of the FAS, 𝜌6, has a 
significant effect on structural fragilities. We begin with a short summary of the four main 
components of Pacific Earthquake Engineering Research Center’s (PEER) Performance Based 
Earthquake Engineering (PBEE) framework, and we use this framework to define structural risk 
in terms of structural fragility and seismic hazard. We then describe a method for developing 
structural fragilities from ground motion simulations, and show that 𝜌6 is a critical feature of 
ground motions that should be considered as a validation parameter for numerical simulations. A 
method is developed for generating simulated ground motions with appropriate 𝜌6. We present an 
example seismic risk assessment for a generic site in southern California using this ground-motion 
simulation method, and compare with results using the same simulation method but without the 
correlation. Finally, we illustrate how the effect of 𝜌6 propagates through to the structural response 
variability and then into seismic risk.  
 

2. Structural Risk in Performance Based Earthquake Engineering 
 
Following [17], PEER’s probabilistic framework for PBEE is separated into four main analysis 
steps: hazard analysis (characterized by a ground motion Intensity Measure, IM), structural 
analysis (characterized by an Engineering Demand Parameter, EDP), damage analysis 
(characterized by Damage Measure, DM), and loss analysis (characterized by a Decision Variable, 
DV). Using this framework, one can focus solely on the first two analysis steps to estimate the 
EDP hazard, defined as the mean annual rate of exceeding a given structural response level. The 
EDP hazard (also referred to as ‘drift hazard’) is given by Eq. 2: 
 

𝜆 𝐸𝐷𝑃 > 𝑧 = 𝑃 𝐸𝐷𝑃 > 𝑧 𝐼𝑀 = 𝑥 	 𝑑𝜆(𝐼𝑀 > 𝑥)U 2   
 
where 𝜆 𝐸𝐷𝑃 > 𝑧  is the mean annual rate of exceeding EDP value 𝑧. 𝑃 𝐸𝐷𝑃 > 𝑧 𝐼𝑀 = 𝑥  is the 
structural fragility, which is the probability of exceeding EDP value of 𝑧 given IM = 𝑥. 𝜆(𝐼𝑀 >
𝑥) is the mean annual rate of exceeding IM value 𝑥, and 𝑑𝜆 is the rate of occurrence of IM value 
𝑥, which is the slope of the IM hazard curve. Therefore, the EDP hazard for exceeding a specified 
value 𝑧 is comprised of two quantities: the structural fragility, and the ground motion hazard, 
integrated over all relevant IM levels, 𝑥. 
 
In this paper, the selected IMs are 5% damped pseudo-spectral acceleration (PSA) and Fourier 
amplitude spectra (FAS), and the selected EDP is the maximum interstory drift ratio (MIDR), but 
it is noted that the EDP risk framework (Eq. 2) is applicable to other appropriate IMs and EDPs.  
 



Fragilities Developed from Simulations 
 
A fragility function specifies the probability of a structural consequence (EDP) as a function of 
the ground motion intensity (IM). Fragility functions can be obtained by performing the 
Incremental Dynamic Analysis (IDA) procedure as a means of integrating structural simulations 
and ground motions ([17], [18]). With this procedure, using a suite of ground motions, structural 
response calculations are carried out in which the building is subjected to the input ground motions 
having a specified IM amplitude, and the fraction of the ground motions exceeding the specified 
EDP are counted. The process is repeated at increasing IM levels to obtain the probability of 
exceeding the EDP at discrete IM amplitudes. A lognormal cumulative distribution function can 
be fit to the logarithm of the probabilities, e.g Eq. 3: 
 

𝑃7@+ 𝐸𝐷𝑃 > 𝑧 𝐼𝑀 = 𝑥 = Φ[Z[ U \Z[	(])
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where 𝑃7@+ 𝐸𝐷𝑃 > 𝑧 𝐼𝑀 = 𝑥  is the fitted fragility function, Φ is the CDF of the standard normal 
distribution, 𝛼 is the IM with median fragility, 𝛽 is the logarithmic standard deviation of the CDF, 
and 𝛼 and 𝛽 are estimated from the IDA results. This method is demonstrated in Section 4. An 
alternative to IDA is the Multiple Stripe Analysis (MSA) method, where ground motions selected 
specifically for the site and IM amplitude are analyzed, instead of scaling one set of ground 
motions for multiple IM amplitudes [13]. The MSA method is appropriate for a site-specific risk 
assessment, but requires additional analysis effort. This approach is not utilized herein, because 
the impact of the correlation can be demonstrated using an IDA. 
 

3. Incorporating 𝝆𝝐 into Ground Motion Simulations  
 
The point source (PS) stochastic method for simulating earthquake ground motions, which is based 
on the pioneering work of [19], [20] and [21], among others, has been developed and refined over 
several decades. David Boore formalized the method and extended it to the simulation of 
acceleration time series ([21], [22]). With the [22] method (Boore03 hereafter), a simulated time 
series is produced using a seismological model of the Fourier amplitude spectrum, and assuming 
the spectrum is distributed with random phase angles over a time duration related to the earthquake 
magnitude and the distance between the source and site. The fundamentals and theory of the PS 
stochastic method are not covered here further because they have been described extensively in 
the literature. The reader is referred to [22] for a comprehensive description, as we only provide a 
brief summary here.  
 
The classic procedure starts by generating normally distributed noise (Fig 2a) and applying a time 
domain taper with duration consistent with the scenario being considered (Fig. 2b). The tapered 
noise is transformed into the frequency domain (Fig. 2c), and the FAS of the noise is normalized 
by the square root of the mean power, such that the FAS has mean power of one (Fig. 2d, showing 
the natural logarithm of these values). The normalized FAS is then shaped to the PS Fourier 
amplitude spectrum of the considered scenario (Fig. 2e), and inverse transformed to the time 
domain using the phase angles from the tapered time domain noise (Fig. 2f). 
 
The Boore03 procedure generates 𝜖 values from time-domain white noise, resulting in 𝜖 with no 
correlation between frequencies. To generate simulated time series with realistic inter-period 



correlation, we modify the Boore03 procedure in the following ways. First, we make use of the 
symmetric, positive definite covariance matrix (Σ) for the inter-frequency 𝜌6 of FAS which the 
authors have developed in [23].  This matrix is factorized using the Cholesky decomposition Σ =
𝐿𝐿e, where 𝐿 is a lower triangular matrix [24]. Then the zero-mean correlated random variables Y 
can be calculated as Y = LZ, where Z are random variables drawn from a standard normal 
distribution. The random variables Y are then normally distributed with zero mean and covariance 
matrix Σ. In step d from Fig. 2, 𝜖 values are replaced with random numbers sampled in this fashion. 
We then multiply the sample 𝜖 by a standard deviation equal to 0.65 (ln units). The value of 0.65 
is consistent with the Boore03 procedure FAS variance, which is not sensitive to the time-domain 
variance of input white noise. Finally, we proceed with the Boore03 recipe to generate time series 
with realistic inter-frequency 𝜌6 of FAS. 
 

 
Figure 2. Illustration of the Boore (2003) procedure for simulating acceleration time series using 

the point-source stochastic method. Each sub-panel is described in the text. 
 
These two simulation procedures result in a pair of compatible acceleration time series. Both have 
similar phasing, duration, frequency content, and amplitudes. Individual realizations of correlated 
𝜖 may be positive or negative for frequency bands, but as the sample size is increased, the sampled 
𝜖 have the intended standard-normal parameter values. 
 

4. Structural Risk using Ground Motion Simulations 
 
First, we develop structural fragilities using an IDA with two sets of ground motions, created using 
the two simulation procedures described previously. The first set of ground motions have near zero 
inter-period correlation and the second have realistic inter-period correlation. We develop suites 
of 500 uncorrelated and correlated ground motions using the same point source Fourier amplitude 
spectrum as the basis for the ground motion amplitudes. Both suites have similar ground motion 
distributions in FAS space (approximately 0.65 ln units), as shown in Figs 3 and 4, respectively. 
To obtain PSA, we perform the inverse Fourier transform to get acceleration time histories, and 
calculate the response spectrum. On the right side of Figs. 3 and 4, we also plot the random 
vibration theory (RVT) spectrum derived from seismological parameters consistent with the point 



source spectrum [25]. The median PSA of the suite of 500 ground motions closely matches the 
RVT spectrum in both cases.  
 
Although they have the same median, Figs. 3 and 4 illustrate the substantial differences in the 
distribution of PSA between the uncorrelated and correlated ground motion sets. This happens 
because PSA spectra are influenced by a range of frequencies. As described previously, 
considering broad (highly correlated) spectra, the ground motions with extreme FAS 𝜖 at given 
period generally stay extreme over the range of periods influenced by the response spectrum 
calculation (i.e. troughs remain in troughs, and peaks remain in peaks). The aggregate effect is the 
variability in PSA is higher for ground motions with realistic 𝜌6 than for ground motions with low 
𝜌6. The response spectrum is a simplified version of a real structure, and therefore its behavior 
mimics what we expect to see with the complete structural analysis.  
 

 
Figure 3. A suite of 500 uncorrelated ground motion simulations for a M7.0 scenario at 30 km. 

Left: FAS realizations in blue, and the point source scenario spectrum in black.  Right: 
PSA spectra realizations in red, and the RVT spectrum in black. 

  
Figure 4. Like Fig. 3, but using the correlated ground motion simulations procedure. 
 
Using the IDA approach, these sets of ground motions are scaled and numerical structural 
simulations are carried out. We use the open source finite-element platform, OpenSees, to perform 
the dynamic nonlinear structural analyses. Multiple structures have been analyzed (e.g. those 
described in [26], [27], and [28]). At the time of writing, our conclusions regarding the variability 
in structural response do not vary with structure type. Since the impact of the correlation is related 



to structural softening, we intend to explore the effect on additional structures, including those 
with short fundamental periods, to confirm that our observations are applicable to a wide range of 
structures. The fragility results presented herein are for the 6-story steel special moment-resisting 
frame (SMRF) building model described in [26]. 
 
The IDA results are presented in Fig. 5, where blue symbols and lines represent data from the 
uncorrelated simulations and the red symbols and lines represent the correlated simulations. For 
each PSA level (at the fundamental structural period; T=1.38 s), the fraction of the ground motions 
exceeding 4% MIDR are counted. The process is repeated over multiple IM levels to obtain the 
probability of exceeding 4% MIDR at the discrete IM amplitudes. The natural logarithms of these 
probabilities are fit to a lognormal CDF as described in Section 2. For the presented results, the 
lognormal CDF dispersion parameter, 𝛽, is 0.31 for the uncorrelated ground motions and 0.52 for 
the correlated ground motions (comparable to the building code value 0.6 [29]). Larger 𝛽 values 
mean flatter fragility curves with higher probabilities at the low IM levels. 
 

 
Figure 5. Left: MIDR results of the structural analysis for suites of 500 ground motions at. Right: 

MIDR>4% probabilities (symbols) and the fitted CDF fragility functions (lines). 
 

 
Figure 6. Left: Combining the seismic hazard occurrence and MIDR>4% fragilities to get the EDP 

hazard. Right: the marginal risk and cumulative marginal risk on linear scales.  
 
We combine the structural fragilities with the seismic hazard to calculate the EDP hazard, using 
Eq. 2. The results are shown in Fig. 6, where the left panel compares the structural fragilities and 



marginal risk on a logarithmic vertical axis. Plotting them this way illustrates the consequential 
differences between them at moderate IM levels, where the hazard is higher, and the risk is 
sensitive to the fragility. To calculate the risk from the EDP hazard, we have assumed a step 
function of the DMs (usually collapse) as a function of EDP fragility. The right panels of Fig. 6 
compare the marginal and cumulative marginal risk on a linear scale for the two ground motion 
sets. For this case, the highest marginal risk comes from PSA(T=1.38 s) levels less than 1g. We 
have looked at structural risk for four damage states using MIDR exceedances of 0.5%, 1%, 2%, 
and 4% (Table 1). For the MIDR>4% case, the structural risk calculated using the ground motions 
with realistic inter-period correlations is a factor of 1.43 higher than the risk calculated using 
uncorrelated ground motions, which corresponds to approximately the difference between a 4,000- 
and 2,800-year return period. 
 
Table 1.     Structural risk for damage states with MIDR exceedances of 0.5%, 1%, 2%, and 4%. 

GM Suite MIDR ≥ 0.5% MIDR	≥	1% MIDR ≥ 𝟐% MIDR ≥ 4% 
Correlated 1.44E-02 5.12E-03 1.42E-03 3.56E-04 

Uncorrelated 1.25E-02 4.26E-03 1.11E-03 2.49E-04 
Ratio 1.15 1.20 1.28 1.43 

 
5. Conclusions 

 
This paper demonstrates that the inter-period correlation of epsilon (𝜌6) is an essential component 
of ground motion simulation validation, particularly when the simulations are used in structural 
fragility or risk applications. Without the adequate inter-period correlation of simulated ground 
motions, variability in the structural response may be under-estimated. This leads to structural 
fragilities which are too steep (under-estimated dispersion parameter 𝛽) and propagates through to 
non-conservative estimates of seismic risk. The conclusions herein apply directly to structural 
fragility or risk assessments which are derived from ground motion simulations, commonly 
referred to as ‘ruptures to rafters’ simulations. 
 
Thanks to Sashi Kunnath and Maha Kenawy for support related to the structural analyses.  
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