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Abstract 

Physics-based earthquake simulations, which predict the ground-motions generated by scenario 

earthquakes, have the potential to be extremely useful in dynamic analyses of structures because 

they can be generated for scenarios not well represented in the empirical data set such as M8 

earthquakes and for site/source-specific rupture geometries. But before simulations are accepted 

for engineering applications, they first need be validated against recorded data and empirical 

models. Recent efforts have made significant progress towards validation by considering the 

median predictions of simulations (e.g. Goulet et al., 2015), but further work is still required in 

order to validate other critical ground-motion properties. This dissertation develops the framework 

for validation of one important parameter: the inter-period correlation of epsilon (!) of ground-

motions. The purpose of this research is three-fold:  (1) to illustrate that the inter-period correlation 

of ! ("#) is a critical feature of ground motions that influences variability of structural response 

and which should be considered as a validation parameter, (2) to develop an avenue for improving 
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the correlation in the simulations, and (3) to provide an example application which can help guide 

future calibrations.  

To achieve these goals, an empirical ground-motion model (GMM) is developed for smoothed 

Fourier amplitude spectra (FAS), and the residuals from this model are used to develop a model 

for the "# of the FAS. The FAS is used because it is a more direct representation of the frequency 

content of the ground motions than response spectra and is better understood by seismologists. 

Using simple ground-motion simulations based on the point-source stochastic method, the 

importance of the "# of FAS in capturing the variability of structural response is demonstrated. 

Results show that without the adequate "# of FAS in the simulations, variability in the structural 

response may be under-estimated. This leads to structural fragilities which are too steep (under-

estimated dispersion parameter %) and to non-conservative estimates of seismic risk. 

To commence the validation process, "# of the smoothed FAS of several established ground-

motion simulation methods are compared with the "# observed in data. None of the six finite-fault 

simulation methods tested adequately capture the "# over the entire frequency range evaluated, 

although several of the methods show promise, especially at low frequencies. The validation is 

performed for the FAS because this information provides the developers of the simulation methods 

better feedback in terms of how they can modify their methods that is not clear when using 

response spectra comparisons. Finally, the calibration of "# for one simulation method, EXSIM 

(Aktinson and Assatourians, 2014) is demonstrated and tested. Recommendations are provided for 

future "# calibration efforts.  
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Research Objectives 

The seismological community has been developing methods to numerically simulate seismograms 

for engineering applications. To date, the amplitudes of numerical simulation have been used in 

engineering practice to constrain ground-motion models; however, the seismograms  have not been 

adequately validated for other characteristics including the variability of the Fourier spectra.  

Without adequate validation, the time series from the numerical simulations are not ready for use 

in engineering applications. 

This dissertation contributes to improving ground-motion simulations, precisely with respect to 

their inter-frequency correlation. The purpose of this research is three-fold: to illustrate that the 

inter-period correlation in ground-motion simulations is a critical feature which should be 

considered as a validation parameter, to develop an avenue for improving the correlation in the 

simulations, and to provide an example application which can help guide future calibrations.  

This introduction chapter provides some background on the inter-frequency correlation of ground-

motions, presents a literature review of the related topics, and closes with a description of the 

subsequent dissertation chapters. 

Background and Motivation 

To define the inter-frequency correlation, some background is first given on earthquake ground-

motion models (GMMs, also called ground-motion prediction equations, GMPEs, or attenuation 

models). GMMs are used for estimating the level of ground shaking at a site, including the 

variability in that level, based on earthquake magnitude, source-to-site distance, local site 
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conditions, and other seismological parameters. Among other applications, GMMs are often used 

in probabilistic seismic hazard analyses (PSHA), including those performed to develop the U.S. 

Seismic Design Maps (ASCE, 2016). GMMs can be developed using recorded ground-motions, 

using numerical earthquake simulations, or a combination of both approaches. 

Empirical GMM residuals are the difference, in logarithmic units, between the recorded ground 

shaking and the median ground shaking predicted by the GMM. These residuals are typically 

partitioned into between-event residuals (UV), and within-event residuals (UW), following the 

notation of Al Atik et al., (2010). For large numbers of recordings per earthquake, the between-

event residual is approximately the average difference in logarithmic-space between the observed 

Intensity Measure (IM) from a specific earthquake and the IM predicted by the GMM. The within-

event residual (UW) is the difference between the IM at a specific site for a given earthquake and 

the median IM predicted by the GMM plus UV. By accounting for repeatable site effects, UW can 

further be partitioned into a site-to-site residual (UA2A) and the single-station within-event residual 

(UWA) (e.g. Villani and Abrahamson, 2015). 

The residual components UV, UA2A and UWA are well-represented as zero-mean, independent, 

normally-distributed random variables with standard deviations Y, Zcdc, and Zee, respectively (Al 

Atik et al., 2010). These GMM residual components are converted to epsilon (!f, !cdc, and !gc) 

by normalizing the residuals by their respective standard deviations. Because of the normalization, 

the random variables !f, !cdc, and !gc are represented by standard-normal distributions (mean=0, 

variance=1). If the total residual is used, then the resulting !hihjk will, in general, not have zero 

mean due to the uneven sampling of recordings per earthquake in per site in the data set. 
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For a given recording, the values of ! at neighboring periods (l) are correlated. For example, if a 

ground motion is stronger than average at l=1.0 s, then it is likely to also be stronger than expected 

at nearby periods, e.g. l=0.8 s or l=1.2 s; however, for a widely-spaced period pair (e.g. l=10.0 

s compared with l=1.0 s), the ! values will be weakly correlated. The inter-period correlation 

coefficient, ", quantifies the relationship of ! values between periods for a given recording. The 

correlation can also be described in terms of ground-motion frequency (0, where 0 = 1/l), and 

so the terms inter-period and inter-frequency are used interchangeably in this dissertation. 

The correlation coefficient of two random variables is a measure of their linear dependence. In this 

case, ! calculated from a large set of ground motions at different frequencies (0) are random 

variates. The correlation coefficient between !(0n) and !(0d) can be estimated using a maximum 

likelihood estimator, the Pearson-product-moment correlation coefficient, " (Fisher, 1958). The 

correlation coefficient for a sample of ! at frequencies 0n and 0d is given by Equation 1-1, 

"#(op),#(oq) =
GLrs!(0n), !(0d)t

X#(op)X#(oq)
=

∑ s!v(0n) − !(0n)xxxxxxxts!v(0d) − !(0d)xxxxxxxty
vzn

{∑ s!v(0n) − !(0n)xxxxxxxt
dy

vzn
{∑ s!v(0d) − !(0d)xxxxxxxt

dy
vzn

(1 − 1) 

where GLr is the covariance, X is the standard deviation, H is the total number of observations, ` is 

the `th observation of !, and !(0n)xxxxxxx and !(0d)xxxxxxx are the sample means of ! at frequencies 0n and 0d, 

respectively. The ! ̅will be equal to zero if the GMM is unbiased. The relation for "#(op),#(oq) given 

in Equation 1-1 is reciprocal: the correlation coefficient between two given frequencies is the same 

regardless of which frequency is the conditioning frequency. To account for all three residual 

terms, the total correlation is calculated as shown in Equation 1-2, 
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"#,hihjk(0n, 0d) =														 

"f(0n, 0d)Y(0n)Y(0d) + "cdc(0n, 0d)Zcdc(0n)Zcdc(0d) + "gc(0n, 0d)Zee(0n)Zee(0d)

X(0n)X(0d)
(1 − 2) 

where "f(0n, 0d) is the correlation of the normalized between-event residuals, "cdc(0n, 0d) is the 

correlation of the normalized site-to-site residuals, and "gc(0n, 0d) is the correlation of the 

normalized single-station within-event residuals. 

Using a database of residuals, the calculation of "#(op),#(oq) can be repeated for every frequency 

pair of interest. Figure 1-1 shows a graphical representation of this step at three example frequency 

pairs. The resulting correlation coefficients for each pair of frequencies can be saved as tables (e.g. 

Abrahamson et al., 2014; Al Atik, 2011; Akkar et al., 2014; Azarbakht et al., 2014; Jayaram et al., 

2011), or can be empirically modeled. For modern GMMs, models of the correlation of ! are 

commonly created for PSA (e.g. Baker and Cornell, 2006; Baker and Bradley, 2017; Baker and 

Jayaram, 2008; Cimellaro 2013; Goda and Atkinson, 2009). Recently, correlation models for ! 

from Fourier amplitude spectra (FAS) have also been developed (e.g. Stafford, 2017; and Chapter 

3 of this dissertation). 
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Figure 1-1. ! values at pairs of frequencies calculated from a database of ground motions, exhibiting the 
correlation dependent on frequency spacing. Left: 0n	= 0.2 Hz and 0d	= 5.0 Hz. Middle: 0n	= 
0.2 Hz and 0d	= 0.3 Hz. Right: 0n	= 0.2 Hz and 0d	= 0.2 Hz 

Physical Meaning and Relevance of "# 

Because larger-than-average ground motions tend to be from local spectral peaks and lower-than- 

average ground motions tend to be from local spectral troughs, the parameter ! is an indicator of 

the peaks and troughs at a given frequency in a spectrum. And since "# is a measure of the linear 

dependence of ! between two frequencies, it follows that "# characterizes the relative width of 

these extrema. For example, very high "# (values close to one) over broad frequency pairs indicate 

wide peaks and troughs in the spectra; leading to smoother undulating spectra. Conversely, very 

low "# (values close to zero) between neighboring frequency pairs indicate very narrow peaks and 

troughs; leading to ‘noisy’ looking spectra.  

The generic term ‘spectra’ can refer to either PSA or FAS. PSA spectra are the peak response from 

a single degree of freedom oscillator system. PSA spectra are influenced by a range of frequencies, 

and the breadth of that range is dependent on the oscillator period (discussed in Chapter 2) and on 

the damping. The FAS provides a more direct representation of the frequency content of the ground 
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motions, and because the Fourier transform is a linear operation, the FAS is a much more 

straightforward representation of the ground motion and is better understood by seismologists than 

PSA. This simpler behavior makes the FAS preferable over PSA for incorporating inter-period 

correlation into numerical methods for ground-motion simulations, and it is the primary IM 

adopted in this study. 

Because "# is a measure of the width of spectral peaks, it has relevance in dynamic structural 

response. For linear response, a structure will be sensitive to the frequency content over a range of 

frequencies about the natural frequency of the structures. For the uncorrelated case, if the ! value 

at a given frequency is a high positive value (corresponding to a peak), the values of ! at the nearby 

frequencies will be randomly high or low, so the response of the structure will not be strongly 

affected by the ground motion at these neighboring frequencies; however, for the correlated case, 

the values of ! at the nearby frequencies will tend to also be positive values so the response of the 

structure will increase by a larger factor due to the increased response from the neighboring 

frequencies. During nonlinear seismic response, the effect of the correlation can be even greater 

than for linear response. For nonlinear response, structures can experience softening characterized 

by elongation of their natural vibration period (Lin et al., 2008; Bradford 2007). This occurs when 

damage to the structural elements leads to large strains which reduce the effective stiffness and 

increases effective damping. As a structure softens, its effective fundamental period increases, and 

the response will depend on if the structure is softening into a peak or a trough in the spectrum. 

For the correlated case, the chance of softening into a peak or a trough will depend on the breadth 

of a ground motion spectral peak or trough, thereby affecting the structural response. The aggregate 
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effect is the variability in structural response is higher for ground motions with realistic "# than 

for ground motions with unrealistically low "#; this point is demonstrated in Chapter 4. 

Ground-Motion Simulations 

Methods for simulating the ground motions generated by earthquakes have been developed and 

refined over the past several decades. “Physics-based” earthquake ground-motion simulations can 

be defined as the prediction of the ground-motion generated by earthquakes by means of numerical 

methods and models that explicitly incorporate the physics of the earthquake source and the 

resulting propagation of seismic waves (Taborda and Roten, 2014). Simulations methods described 

as “stochastic” rely less on solving the equation of motion and are calibrated empirically. “Hybrid” 

techniques employ some combination of the physics-based and stochastic-based approaches. 

These methods vary in technique and complexity, but most of them generate the same product; a 

simulated time series of ground motion at a select location on the earth surface. For more 

information, Burks (2014) provides an excellent review of existing simulation methods. 

Engineering Utilization of Simulations 

Simulations have the potential to be extremely useful in engineering applications, particularly 

when earthquake time series are required for input into dynamic structural analyses. There are 

limited numbers of ground-motion recordings for large magnitude earthquakes recorded at close 

distances, and simulations can fill this gap in the recorded databases. There are several potential 

applications of simulations of large magnitude, near source scenarios. First, for sites located near 

active major faults, simulations can provide scenario ground motions for deterministic design and 
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analyses. Similarly, simulations can be used to constrain the near-source magnitude scaling of 

ground-motion models (e.g. Chapter 2), which are in turn used in PSHA. Or, simulations can be 

used explicitly to perform PSHA, which has the potential to reduce uncertainties by capturing the 

complex physics that are ignored using traditional PSHA methods (e.g. CyberShake; Graves et al., 

2011). Simulations also have application beyond just near-source, large magnitude scenarios. 

Because they provide the full time series of ground motion, the simulations can be used to analyze 

the dynamic response of geotechnical models and engineered structures. The source- and site-

specific nature of simulations means the ground motions have the potential to contain rupture 

directivity pulses, static offset, and directionality. 

Validation of Simulations 

There is increasing recognition that simulations can be utilized as described above, but for the 

simulations to be accepted, they should be validated first. Validation means that the simulations 

should produce ground-motions consistent with observations (Burks, 2014). Validations can be 

broadly categorized as either comparisons with recorded data or with empirical models.  

Several examples of validation exist in the literature. The earliest examples used qualitative 

measures for subjectively validating the methods, including comparisons of waveforms by the 

same researcher who developed the method and performed the simulation. More recent validations 

are performed by third parties and attempt to develop criteria for objectively assessing the 

simulations in a consistent manner. Examples of recent validations include Burks and Baker 

(2014), Goulet et al., (2015) and Luco et al., (2016). 
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Burks and Baker (2014) proposed a validation framework based off three main structural response 

proxies: the inter-period correlation of ! for response spectra, the ratio of maximum-to-median 

spectral acceleration across all horizontal orientations, and the ratio of inelastic-to-elastic 

displacement. The conclusions from Burks and Baker (2014) regarding the inter-period correlation 

of ! for response spectra are addressed in Chapter 4. In short, the simulation methods need 

calibration with respect to this parameter. 

In the year 2013, the ‘Broadband Platform Validation Exercise’ was organized by the Southern 

California Earthquake Center (SCEC; Dreger et al., 2015 and Goulet et al., 2015). This exercise 

evaluated several simulation methods on the suitability of simulated PSA for use in engineering 

applications. This validation exercise focused on evaluating the median PSA for a gauntlet of 

subjective and objective validation criteria, using both recorded earthquakes and GMMs. The 

Dreger et al. (2015) validation exercise was an important first step towards a more complete 

validation of the simulation methods considered.  

The SCEC Ground Motion Simulation Validation (GMSV) Technical Activity Group was planned 

in coordination with the Dreger et al., (2015) validation effort. As document in Luco et al., (2016), 

this group developed rating systems for collections of ground-motion parameters related to 

structural response. The inter-frequency correlation of ! was suggested for validation but was 

determined to be outside the scope of the project. 

The aforementioned efforts are three examples of successful validation schemes, even though not 

all of the simulation methods were deemed acceptable for all metrics. For the simulations to 

continue on the path towards widespread approval, the methods must pass all previous validations, 



 11 

and more validations for different properties are necessary. In addition to the Burks and Baker 

(2015), Goulet et al., (2015), and Luco et al., (2016) parameters, other ground-motion properties 

which need to be validated are listed below. Validations of the aleatory variability and the inter-

frequency correlation of ! (FAS first, then PSA) should be the first priority after performing 

validations for the median response. This is because the appropriate "# is required for simulations 

to be used in seismic risk, as described in Chapter 4. The research described in this dissertation 

focuses on the inter-frequency correlation of !, and beyond just validation, an avenue is developed 

for improving the correlation in the simulations. Validation of the remaining properties should be 

the topics of future research.  
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Additional ground-motion properties for validation 

1. Median ground-motions  

a. PSA (5% damped). This is the Dreger et al., (2014) case, which did not address 

other features. 

b. FAS 

c. PSA and FAS, vertical component 

2. Other FAS features  

a. Inter-frequency correlation of ! 

b. Aleatory variability 

c. Variability between horizontal components  

3. Duration features 

a. Acceleration-based (high frequencies) 

b. Velocity-based (intermediate frequencies) 

4. Damping scale factors 

a. Scale factors from 2% to 30% damping (high damping for base isolation) 

5. Peak velocity scaling 

a. Ratio of peak ground velocity to PSA at T=1 sec 

b. Separation of within-basin and outside basin sites 

6. V/H ratio for FAS 

a. Check for the linear site response range 

Literature Review 

Fourier amplitude spectra GMMs 

GMMs for Fourier amplitude spectra are less common than their response spectrum counterparts. 

Douglas (2018) summarized all GMMs published worldwide between 1964 and early 2018 and 

found only 16 empirical models for the prediction of Fourier amplitude spectra out of 1,243 total 

models. From the past five years, only four FAS models are identified in Douglas (2018): Bora et 
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al., (2014), Bora et al., (2015), Lee et al., (2015), and Gupta and Trifunac (2017). In the short time 

since the Douglas (2018) catalog release, an FAS model by Bora et al., (2018) was also accepted 

for publication. Both Bora et al., (2014), and Bora et al., (2015) are developed using data from 

Europe, the Middle-East and the Mediterranean regions. Lee et al., (2015) uses data from Serbia 

and Gupta and Trifunac (2017) uses data from the Himalaya and northeastern India regions.  

Bora et al., (2018) uses more recent data from shallow crustal earthquakes recorded globally (from 

the United States, Taiwan, Japan, and Italy). This model is the closest analog to the model 

developed as part of this dissertation research. However, the Bora et al., (2018) FAS model is very 

simple and emphasizes fitting the data to the functional form rather than model extrapolation to 

areas not well-constrained by the data. The median FAS model is developed in parallel with a 

model for ground motion duration, and these are combined to compute response spectra using 

random vibration theory. Since the main objective of Bora et al., (2018) is to develop a response 

spectrum model, a model for the aleatory variability of the FAS is not developed. 

Inter-Frequency Correlation GMMs 

For modern GMMs, models of the inter-period correlation of ! are commonly created for PSA 

(e.g. Baker and Cornell, 2006; Baker and Bradley, 2017; Baker and Jayaram, 2008; Cimellaro 

2013; Goda and Atkinson, 2009; Abrahamson et al., 2014). If not modeled, the correlation has 

been saved as tables (e.g. Abrahamson et al., 2013; Al Atik, 2011; Akkar et al., 2014; Azarbakht 

et al., 2014; Jayaram et al., 2011). The Baker and Jayaram (2008) inter-period correlation model 

for within-event ! is based on PSA from crustal earthquakes. Using an updated database, Baker 
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and Bradley (2017) confirmed that the updated correlations were largely consistent with the Baker 

and Jayaram (2008) model.  

Stafford (2017) developed FAS-based "# models for the between-event, between-site and within-

site components of residuals based on the NGA-West1 database (Chiou et al., 2008). This study 

used unsmoothed FAS ordinates and used both as-recorded horizontal components of the ground-

motions. Due to these differences in the smoothing of the FAS and the treatment of the two 

horizontal components, the resulting correlation models are not directly comparable. The 

differences between the Stafford model and the model developed here are discussed in Chapter 3. 

Validation of the Inter-Frequency Correlation and Variability of Simulations 

Recent validation efforts by Burks and Baker (2014) and Luco et al., (2016) are described 

previously. Bijelic et al., (2018) performed assessments of building performance using sets of 

recorded and SCEC simulated motions with matching spectral shape and duration. They found a 

bias in the response of structures under the simulated ground motions caused by the lack of inter-

period correlation of the simulations; this conclusion is expanded upon in Chapter 4 of this 

dissertation. 

Wang and Jordan (2014) applied a technique named Average-Based Factorization (ABF) to 

compare simulation-based and GMM-based seismic hazard models. ABF uses a hierarchical 

averaging scheme to separate the simulated ground-motions into relative (dimensionless) 

excitation fields representing site, path, directivity, and source effects. ABF partitions the variance 

of each of these effects into uncorrelated components, which allows for a component-wise 
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comparison between the variability of CyberShake simulations and empirical GMMs. Wang and 

Jordan (2014) found that for a large ensemble of CyberShake simulations (prototype version 

CS11), the total CS11 PSA variance is about 60% higher than the NGA-West1 GMMs 

(Abrahamson et al., 2008) at 2s and almost 30% lower at 10s. This study falls under the category 

of validation against empirical models. 

Organization 

This dissertation is organized into six chapters. Following this introduction, there are four main 

chapters. The dissertation culminates with a chapter summarizing the results and recommending 

future research areas. The content of the four body chapters are described below.  Chapters 2 and 

3 have been submitted for publication and Chapter 4 has been accepted for publication; these 

chapters underwent minor cosmetic modifications from their published versions in order to 

maintain consistency with the other dissertation chapters.  

Chapter 2 describes the development of a ground-motion model for smoothed Fourier amplitude 

spectra using data recorded in California and Nevada. Generating this model served two main 

purposes. First, it can be used by others in future applications. Second, a natural result of ground-

motion modeling is the residuals, which are used to develop a model for the correlation of the 

residuals between frequencies. This correlation model is the foundation of the following chapters. 

This chapter is modified from the paper entitled “An empirical model for Fourier amplitude spectra 

using the NGA-West2 database”, authored by Jeff Bayless and N.A. Abrahamson, has been 

submitted for publication in the journal Bulletin of the Seismological Society of America, and is 

currently under review. 
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Chapter 3 describes the development of the model for the correlation of Fourier amplitude spectra 

residuals between frequencies, based off the EAS residuals from Chapter 2. This chapter is 

modified from the paper entitled “An empirical model for the inter-frequency correlation of epsilon 

for Fourier amplitude spectra”, authored by Jeff Bayless and N.A. Abrahamson, which has been 

submitted for publication in the journal Bulletin of the Seismological Society of America, and is 

currently under review. 

Chapter 4 is composed of two parts. First, the inter-frequency correlation is demonstrated to be a 

critical feature which should be considered as a validation parameter in ground-motion 

simulations, because it relates to the variability of dynamic structural response which controls 

seismic risk. Second, the inter-frequency correlations in multiple established simulation methods 

are evaluated to provide guidance for future calibration. This chapter is modified from the paper 

entitled “Evaluation of the inter-period correlation of ground motion simulations”, authored by 

Jeff Bayless and N.A. Abrahamson, and has been accepted for publication in the journal Bulletin 

of the Seismological Society of America. As this paper was designed to be a standalone article, 

some material from this introduction chapter is repeated in Chapter 4. 

Chapter 5 focuses on techniques to adjust the inter-frequency correlation in simulations to be 

consistent with the empirical model developed in Chapter 4. The simulation method EXSIM 

(Aktinson and Assatourians, 2014) is used as an example application of the inter-frequency 

correlation model. The challenges associated with this implementation are documented and 

recommendations are provided for future calibration efforts. 
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Chapter 2: 

An empirical model for Fourier amplitude spectra using the 

NGA-West2 database 
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Abstract 

An empirical ground-motion model (GMM) for shallow crustal earthquakes in California and 

Nevada based on the NGA-West2 database (Ancheta et al., 2014) is presented. Rather than the 

traditional response spectrum GMM, this model is developed for the smoothed effective amplitude 

spectrum (?@A), as defined by PEER (Goulet et al., 2018). The ?@A is the orientation-independent 

horizontal component Fourier amplitude spectrum (N@A) of ground acceleration. The model is 

developed using a database dominated by California earthquakes, but takes advantage of crustal 

earthquake data worldwide to constrain the magnitude scaling and geometric spreading. The near-

fault saturation is guided by finite-fault numerical simulations and non-linear site amplification is 

incorporated using a modified version of Hashash et al., (2018). The model is applicable for rupture 

distances of 0 – 300 km, ' 3.0 – 8.0, and over the frequency range 0.1 – 100 Hz. The model is 

considered applicable for 4e~� in the range 180 – 1500 m/s, although it is not well constrained for 

4e~� values greater than 1000 m/s. Models for the median and the aleatory variability of the ?@A 

are developed. Regional models for Japan and Taiwan will be developed in a future update of the 

model. A MATLAB program that implements the ?@A GMM is provided in Appendix B of this 

dissertation. 
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Introduction 

The traditional approach for developing ground-motion models (GMMs) for engineering 

applications is to use response spectral values for a range of spectral periods. The response spectra 

GMMs can be used in either deterministic or probabilistic seismic hazard analyses to develop 

design response spectra. The response spectral values represent the response of a simple structure 

to the input ground motion and does not directly represent the ground motion itself. As an 

alternative, Fourier spectral values can be used instead of response spectral values. There are 

several advantages to using Fourier spectra in place of response spectra: (1) the scaling of Fourier 

spectra in the GMM is easier to constrain using seismological theory, (2) linear site response 

remains linear at all frequencies and does not depend on the spectral content of the input motion, 

as is the case for response spectra (Bora et al., 2016), and (3) for calibrating input parameters and 

methods for finite-fault simulations based on comparisons with GMMs, Fourier spectra are more 

closely related to the physics in the simulations.     

 An empirical Fourier spectrum GMM for shallow crustal earthquakes in California and Nevada 

based on the Pacific Earthquake Engineering Research Center (PEER) Next Generation 

Attenuation-West 2 (NGA-West2) database (Ancheta et al., 2014) is developed. The ground-

motion parameter used in the GMM is the smoothed effective amplitude spectrum (EAS), as 

defined by PEER (Goulet et al., 2018). The EAS is the orientation-independent horizontal 

component Fourier amplitude spectrum (FAS) of ground acceleration that can be used with random 

vibration theory to estimate the response spectral values.  
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This paper describes the development of the empirical model using ground-motion data as the 

foundation, along with finite-fault simulations computed using the SCEC Broadband Platform 

(Maechling et al., 2015) to constrain the near-fault large-magnitude scaling, and the analytical site 

response modeling to capture the nonlinear site amplification (Hashash et al., 2018). Rather than 

simply fitting the empirical data, emphasis is placed on building the model using both the empirical 

data and analytical results from these seismological and geotechnical models so that the GMM 

extrapolates in a reasonable manner. A MATLAB program that implements the ?@A GMM is 

provided in Appendix B of this dissertation. A model for the inter-frequency correlation of 

residuals derived from this GMM is presented in Chapter 3.  

EAS Ground Motion Intensity Measure 

The Effective Amplitude Spectrum (?@A), defined in Kottke et al., (2018) and used in the PEER 

NGA-East project (PEER, 2015; Goulet et al., 2018), can be calculated from an orthogonal pair of 

Fourier Amplitude Spectra (FAS) using Equation 2-1:  

?@A(0) = Ä
1
2
[N@AÇÉn(0)d + N@AÇÉd(0)d] (2 − 1) 

where N@AÇÉn and N@AÇÉn are the FAS of the two orthogonal horizontal components of the ground 

motion and 0 is the frequency in Hz. The ?@A is independent of the orientation of the instrument. 

Using the average power of the two horizontal components leads to an amplitude spectrum that is 

compatible with the use of RVT to convert Fourier spectra to response spectra. The ?@A is 
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smoothed using the Konno and Ohmachi (1998) smoothing window, which has weights and 

window parameter defined by: 

W(0) = Ö
sin(â log(0 0ç⁄ ))

â log(0 0ç⁄ )
è
ê

(2 − 2) 

â = 2ë âí
ì (2 − 3) 

The smoothing parameters are described in Kottke et al., (2018): "W is the weight defined at 

frequency f for a window centered at frequency fc and defined by the window parameter b. The 

window parameter â can be defined in terms of the bandwidth, in log10 units, of the smoothing 

window, bw.” The Konno and Ohmachi smoothing window was selected by PEER NGA-East 

because it led to minimal bias on the amplitudes of the smoothed ?@A when compared to the 

unsmoothed ?@A. The bandwidth of the smoothing window, â = 188.5, was selected such that 

the RVT calibration properties before and after smoothing were minimally affected (Kottke et al., 

2018). For consistency with the PEER database used to develop empirical FAS models, the 

smoothed ?@A is used with the same smoothing parameters as described in Kottke et al. (2018).  

On The Selection of Fourier Amplitudes 

In seismic hazard and earthquake engineering applications, the pseudo-spectral acceleration (PSA) 

of a 5% damped single degree of freedom oscillator is a commonly used IM. PSA is useful for 

many applications; however it has drawbacks which are discussed here. The ?@A component of 

the FAS is used as the IM for this study, because the FAS is a more direct representation of the 

frequency content of the ground motions than PSA and is better understood by seismologists. This 
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leads to several advantages, both in the empirical modeling and in forward application. The 

reasoning behind these claims is explained in this section. 

The PSA calculation involves solving the differential equation for the response of an SDOF 

oscillator (with given damping) due to a specified forcing function, selecting the peak response of 

the oscillator, and scaling the peak oscillator displacement by the square of the oscillator natural 

frequency, ï. This calculation can be repeated for a range of oscillators with different natural 

frequencies to develop a response spectrum. The elastic SDOF oscillator response is described by 

the following second order, linear, inhomogeneous differential equation: 

ñ ∗ Q(K) + G ∗ r(K) + ò ∗ R(K) = S(K) (2 − 4) 

where ñ is the SDOF lumped mass, Q(K) denotes the SDOF lateral acceleration, G denotes the 

viscous damping coefficient, r(K) denotes the SDOF lateral velocity, ò denotes the lateral 

stiffness, R(K) denotes the SDOF lateral displacement relative to the ground, and S(K) denotes the 

time-dependent forcing function due to the earthquake ground motion (Chopra, 2007).  

Duhamel’s convolution integral, also known as the unit impulse response procedure, is one 

approach to solving a linear differential equation, such as the one given by Equation 2-4. With this 

method, the response of the system (initially at rest) to a unit impulse force is shown (e.g. in 

Chopra, 2007) to be: 

ℎ(K − Y) =
1
ñïö

Cõúù(hõû) sin[ïö(K − Y)] , K ≥ Y (2 − 5) 
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where Y is the time instance of the impulse, ïö is the damped natural frequency, and † is the 

fraction of critical damping. The entire loading history (such as that due to ground acceleration) 

can then be represented as a succession of infinitesimally short impulses, each producing its own 

response of the form of Equation 2-5. Since the system is linearly elastic, the total response is the 

superposition of the responses to all impulses which make up the entire loading history. Taking 

the limit of the sum as the width of the impulse approaches zero leads to the general expression of 

Duhamel’s integral for an arbitrary forcing function: 

R(K) =
1

ñïö
° S(Y)Cõúù(hõû) sin[ïö(K − Y)] ¢Y
h

�
= ° S(Y)ℎ(K − Y) = ℎ(K) ⊗ S(K)

h

�
(2 − 6) 

where ⊗ is the convolution operator. Equation 2-6 is called the convolution integral because 

convolution is performed in the time domain between the unit impulse response (ℎ), and the force 

due to ground acceleration (S). Then, by the convolution property of the Fourier transform, the 

time-domain convolution of ℎ and S can be expressed in the frequency domain as the point-wise 

multiplication of the Fourier transforms of ℎ and S.  

In Figure 2-1, these steps are shown using an example recorded acceleration time history. In the 

figure, the thin solid black line is the FAS of the recorded acceleration time history, or |N{S}|, 

where N denotes the Fourier transform operator. The solid heavy lines are the FAS of the SDOF 

oscillator impulse response, or |N{ℎ}|. |N{ℎ}| is plotted for three different oscillator frequencies: 

0.5, 2.0, and 10.0 Hz, as identified in the figure legend. The dashed lines are the FAS of the SDOF 

response to the ground motion, |N{R}|, at the same three frequencies. By Equation 2-4, and the 
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convolution property of the Fourier transform, for a given oscillator frequency, |N{R}| = |N{S}| ∗

|N{ℎ}|. This result can be confirmed qualitatively in Figure 2-1. 

Figure 2-1 illustrates that oscillators with different natural frequencies are controlled by different 

frequency ranges of the ground motion. At relatively higher oscillator frequencies (e.g. 10 Hz; 

green lines in Figure 2-1), where there is little energy left to resonate the oscillator, the PSA 

ordinates are dominated by a wide frequency band of the ground motion that ultimately equals the 

integration over the entire spectrum of the input ground motion (Bora at al., 2016). This can be 

observed in Figure 2-1, where the dashed green line traces the ground motion FAS for frequencies 

less than about 4 Hz. The short period PSA is then controlled by the dominant period of the input 

ground motion, rather than the natural period of the oscillator.  
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Figure 2-1. Fourier amplitudes developed from an example ground motion recording and SDOF oscillator 
response, illustrating the range of frequencies contributing to the response spectrum 
calculation. 

In summary, PSA provides the spectrum of peak response from a SDOF system, which is 

influenced by a range of frequencies, and the breadth of that range is dependent on the oscillator 

period. The FAS provides a more direct representation of the frequency content of the ground 

motions, and since the Fourier transform is a linear operation, the FAS is a much more 
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straightforward representation of the ground motion. As a result, recordings from small 

earthquakes can be used to constrain path and site effects without dependence on response spectral 

shape. Numerous seismological models of the FAS are available (e.g. Brune 1970; Boore et al., 

2014) to provide a frame of reference during model development. Additionally, using FAS more 

easily facilitates future calibration of the inter-frequency correlation of ground-motion simulation 

methods because there is not a strong reversal of the correlation coefficients at high frequencies, 

as described in Chapter 3. 

Ground Motion Data 

The PEER NGA-West2 strong-motion database includes over 21,000 three-component strong-

motion records recorded worldwide from shallow crustal earthquakes, including aftershocks, in 

active tectonic regimes since 2003 (Ancheta et al, 2014). Earthquake magnitudes in the full 

database range from 3 to 7.9 and rupture distances extend to over 1,500 km. Earthquakes and 

recordings identified as questionable in quality or with undesirable properties are excluded; see 

Abrahamson et al., (2014) for a complete list of criteria for exclusions. At distances under 100 km, 

recordings from crustal earthquakes worldwide are retained to constrain the magnitude scaling and 

geometric spreading. At the larger distances (up to 300 km), region-specific anelastic attenuation 

and linear site effects due to the regional crustal structure are accounted for by including recordings 

only from California and Nevada. Only events with at least five recordings per earthquake are 

included. 

The ?@A has been calculated for each record in the database up to the Nyquist frequency by PEER 

(Kishida et al., 2016). The usable frequency range limitations of each record are accounted for by 
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applying the recommended lowest and highest usable frequencies for response spectra determined 

from Abrahamson and Silva (1997) as: 

<L®C5K	©5Qâ\C	NBC™RCHG´	(<©N) = 1.25 ∗ max(D]NÇÉn, D]NÇÉd) (2 − 7) 

D`ØℎC5K	©5Qâ\C	NBC™RCHG´	(D©N) =
1
1.25

∗ min(LPF≥¥n, LPF≥¥d) (2 − 8)	 

where D]N is the record high-pass filter frequency, <]N is the record low-pass filter frequency, 

and D_1 and D_2 are the two horizontal components of a three component time series. The factors 

of 1.25 in Equations 2-7 and 2-8 were originally used by Abrahamson and Silva (1997) to ensure 

that the filters did not have a significant effect on the response spectral values. By limiting the 

usable period range using these factors, the frequency interval of the impulse response of a 5% 

damped oscillator will not exceed the filter values. And retaining this usable frequency range 

maintains consistency with the response spectrum calculations. Based on inspection of the usable 

frequency range of the data, the <©N was restricted to a minimum value of 0.1 Hz, and the D©N 

was restricted to a maximum value of 24 Hz for all recordings. Therefore, the regressions were 

performed between 0.1-24 Hz. 

After screening for record quality, recording distance, minimum station requirements, and 

frequency limitations, the final dataset consists of 13,346 unique records from 232 earthquakes, 

both of which vary as a function of frequency. Figure 2-2 shows the frequency dependence of the 

number of earthquakes and recordings used in regressions steps 1 and 3 (listed in Table 2 and 

explained below.) Figure 2-3 shows a magnitude versus rupture distance scatterplot of the NGA-

West2 database subsets used in regression step 1 at 0 = 0.2 and 10 Hz. 
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Figure 2-2. Number of earthquakes and recordings from the NGA-West2 EAS database used in the 
regression steps 1 and 3, versus frequency. The regressions were performed between 0.1-24 
Hz, and higher frequencies are included in this figure only to display the rapid reduction of 
available data with increasing frequency. 

 

Figure 2-3. Magnitude vs. rupture distance pairs of the NGA-W2 EAS database subset used in regression 
step 1, at 0.2 and 10.0 Hz. 
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Median Model Functional Form 

The model parameters are defined in Table 2-1. The scaling of the source is primarily described 

by moment magnitude ('). Source effects are also modeled using the depth to the top of the 

rupture plane (Jhiµ), and a style-of-faulting flag for normal faults (N∂∑∏). These source effects can 

be considered as proxies for stress drop scaling. The the closest distance to the rupture plane, >µπ∫, 

is used as the distance measure for path scaling. The linear and nonlinear site effects are 

parameterized using 4e~�, the time-averaged shear-wave velocity in the top 30 m of the soil column 

below the site. Use of 4e~� does not imply that 30 m is the key depth range for the site response, 

but rather that 4e~� is correlated with the entire soil profile (Abrahamson and Silva, 2008). The 

scaling with respect to soil depth is parameterized by the depth to shear-wave velocity of 1 km/s, 

Jn. 

Table 2-1. Model parameter definitions. 

Parameter Definition 

ªº) 
Effective amplitude spectrum (g-sec). The EAS is the orientation-independent 
horizontal component Fourier amplitude spectrum (FAS) of ground 
acceleration, defined in Goulet et al., (2018). 

' Moment magnitude 

*+,- Depth from the surface to the top of the rupture plane (km) 

Ω.' Style of faulting flag.  1 for Normal faulting earthquakes, 0 for all others. 

æ-ø¿ Rupture distance (km) 

¡)¬√ Time averaged shear wave velocity in the upper 30 meters (m/s) 

*/ Depth from the surface to shear wave velocity horizon of at least 1 km/s (km) 

ƒ- Peak ground acceleration for the 4c~� =	760 m/s condition (g) 
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The model prediction for the ?@A (units g-sec) ground motion is given by Equation 2-9: 

\H 	?@A	 = \H 	?@A≈∆ö	 + !X (2 − 9) 

where X is the total aleatory variability, and the standard-normal random variable ! is the number 

of standard deviations above or below the median. The median estimate of the ?@A (?@A≈∆ö, with 

units g-sec) can be calculated from the general equation: 

\H 	?@A≈∆ö	 = 0∑ + 0« + 0c + 0»hiµ + 0∂∑ + 0»n (2 − 10) 

where each of the model components in Equation 2-10 are described in the following sections.  

Magnitude Scaling, &' 

To capture the effects of energy radiated at the source, the formulation of the magnitude scaling is 

adopted from the Chiou and Youngs (2014) and Chiou and Youngs (2008) GMMs for response 

spectra. A polynomial magnitude scaling formulation was tested (e.g. Abrahamson et al., 2014), 

and after evaluating the data found that both formulations fit the data well, but the Chiou and 

Youngs (2014) formulation would extrapolate more reasonably. Additionally, the Chiou and 

Youngs (2014) formulation has undergone several years of testing and refinement and is based on 

seismological models for the source FAS (Chiou and Youngs, 2008), which translates directly to 

this application. The expression for the magnitude scaling is given by: 

0∑ = Gn + Gd(' − 6) + G~\H	(1 + C
ç…(ç õ')) (2 − 11) 
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The components of 0∑ are described in Chiou and Youngs (2008). To recap, the formulation 

captures approximately linear magnitude scaling at low frequencies (well below the source corner) 

and high frequencies (well above the source corner) with a non-linear transition in between, where 

the transition shifts to lower frequencies for larger magnitudes. The coefficient Gn works jointly 

with the Gd	and G~ terms to approximately represent the mean spectral shape after correcting for 

all other adjustments. The coefficient Gd is the frequency independent linear ' scaling slope for 

frequencies well above the theoretical corner frequency. The term with coefficient G~ captures both 

the approximately linear scaling of the FAS below the theoretical corner frequency, and the non-

linear transition to that scaling. The coefficient Gy controls the width of the magnitude range over 

which the transition between low- and high- frequency linear scaling occurs, and the coefficient 

G∑ is the magnitude at the midpoint of this transition. All of the magnitude scaling terms were 

determined in the regression. 

Path Scaling, &( 

Together with the magnitude scaling, the extensively-tested path scaling formulation of Chiou and 

Youngs (2014) is utilized: 

0« = Gê \Hs>µπ∫ + GÀ cosh(GŒ max(' − Gœ≈, 0))t + (−0.5 − Gê) \Hs>–t + G—>µπ∫ (2 − 12)	 

where >– = {>µπ∫d + 50d. The components of Equation 2-12 are described in Chiou and Youngs 

(2008). To recap, the term with coefficient Gê captures near-source geometric spreading, which is 

magnitude and frequency dependent. The magnitude and frequency dependence on the geometric 
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spreading is introduced by adding a term to the rupture distance inside the log-distance term, 

expressed by the term with coefficient GÀ. This additive distance is designed to capture the near-

source amplitude saturation effects of the finite-fault rupture dimension. This term is a frequency-

dependent constant for small magnitudes, and transitions to be proportional to exp(') for large 

magnitudes, with the largest additive distance at high frequencies. Since the hyperbolic cosine is 

a monotonically increasing function, the coefficient GÀ controls the scaling of this term, and 

coefficients GŒ and Gœ≈ control the gradient.  

Since the coefficients GÀ, GŒ and Gœ≈ are multiplied by Gê, there is potential for trade-off between 

them. The regression procedure is started with the values for coefficients GÀ, GŒ and Gœ≈ from 

Chiou and Youngs (2014) to obtain Gê from the data, ensuring the model did not over-saturate. 

Using Equations 2-11 and 2-12, the full saturation condition (no magnitude scaling at zero 

distance) leads to the following constraint on the coefficients: Gd = −GêGŒ. For Gd values larger 

than the full saturation value, there will be a positive magnitude scaling at zero distance (i.e. not 

full saturation). It is reasonable for the EAS to have some scaling at zero distance even though the 

PSA is nearly fully saturated at high frequencies. The PSA saturates in part because the procedure 

involves selecting the peak response of the oscillator over all time, meaning it is not affected by 

duration. Conversely, the EAS is not a peak response operator, and so it will continue to scale for 

large magnitudes at short distance due to the longer source durations. This is the contribution of 

the lower amplitudes over the duration of the signal.  

The near-source saturation of magnitude scaling is checked against the data and against finite-fault 

simulations (see Model Summary section of this paper for more details) and the EAS saturation in 
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this model does not disagree with those from the simulations. In later stages of the regression, the 

coefficients GÀ, GŒ and Gœ≈ are also determined empirically. The values from the regression do not 

change enough to impact the model, so coefficient values are fixed from Chiou and Youngs (2014) 

for GÀ, GŒ and Gœ≈ in the final model. Thus, the coefficients Gd and Gê control the saturation in the 

model development. 

Following Chiou and Youngs (2014), at large distances, the distance scaling smoothly transitions 

to be proportional to R-0.5 to model surface wave rather than body wave geometric spreading 

effects. This effect is introduced with the \Hs>–t term, which controls at distances greater than 50 

km by subtracting the Gê coefficient and imposing a -0.5 slope. Effects of crustal anelastic 

attenuation (Q) are captured through the term with the frequency-dependent coefficient G—. The Q 

scaling does not require magnitude dependence for the EAS. 

Site Response, &) 

The 4e~� (m/s) dependence of site amplification is modeled using the form: 

0c = 0c∏ + 0∂∏ (2 − 13Q)

0c∏ = G‘ \H ’
ñ`H(4e~�, 1000)

1000
÷ (2 − 13â)

0∂∏ = 0d\H ’
=◊ + 0~
0~
÷	 (2 − 13G)

0d = 0êsC
oÿs≈vysŸ⁄¤‹,Ÿ›fifltõ~Œ�t − CoÿsŸ›fiflõ~Œ�tt (2 − 13¢)

\H(=◊) = 1.238 + 0.846	\H(?@Aµ∆o(0 = 5	DE)) (2 − 13C)
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where the linear site amplification is given by 0c∏, and the nonlinear site amplification is given by 

0∂∏, which is the analytical site amplification function for FAS in the western United States (WUS) 

modified from Hashash et al. (2018).  

The linear site term, 0c∏, is formulated as a linear function of \H(4e~�) and is centered on the 

reference 4e~� of 1000 m/s. The 0c∏	term is determined in the regression analysis. Abrahamson et 

al. (2014) observed that at long periods, the scaling of PSA with 4e~� became weaker for higher 

4e~� values, and, therefore, selected a model that does not scale with 4e~� above some maximum 

value, 4n = 1000 m/s. Inclusion of this feature is based on evaluation of the data (Figure 2-4), 

which implies that above 1000 m/s the correlation between 4e~� and the deeper profile no longer 

holds. Below 1000 m/s, the linear site amplification terms approximately scales linearly with 

\H(4e~�), so the regional linear 4e~�-based site amplification is modeled with a single frequency-

dependent coefficient, G‘. 
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Figure 2-4. 4e~� scaling of the linear site amplification terms, at 0 = 0.2, 0.5, 1, 5, 10, and 20 Hz. 

The nonlinear site amplification, 0∂∏, is constrained using a purely analytical model rather than 

obtaining it from the data. Empirical evaluations of the nonlinear effects are limited by the 

relatively sparse sampling of ground motions expected to be in the nonlinear range in the NGA-
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West2 database (Kamai et al., 2014). Therefore, the Hashash et al. (2018) nonlinear site 

amplification term, 0∂∏, is adopted to model nonlinear soil amplification. This model was 

developed analytically by performing large-scale 1D site response simulations of input rock 

motions propagated through soil columns representative of WUS site conditions. Hashash et al. 

(2018) produced linear and nonlinear site amplification models for the PSA and FAS. Equations 

2-13c and 2-13d are the nonlinear FAS amplification components of the Hashash et al. (2018) 

model developed for the WUS. In these equations, 0~, 0ê and 0À are frequency-dependent 

coefficients, =◊ is the peak ground acceleration (PGA, in units g) at rock outcrop, and 4µ∆o is the 

limiting velocity beyond which there is no amplification relative to the reference rock condition, 

set to 760 m/s (Hashash et al., 2018). In this model, almost no nonlinearity is applied at frequencies 

below 1.0 Hz and the modification approaches zero for small values of the input motion (=◊) and 

as 4e~� approaches 4µ∆o.  

To ensure smooth spectra in the GMM, a smoothed version of the Hashash et al. (2018) nonlinear 

site amplification model is implemented. The smoothing of coefficients 0~, 0ê, and 0À in frequency 

space are shown in Figure 2-5. The maximum frequency of the Hashash et al. (2018) model is 13.3 

Hz, and the coefficients of the model reduce the nonlinear effect to zero for frequencies greater 

than this value simply due to the lack of FAS values at higher frequencies. Physically, this is not 

realistic behavior. To include nonlinear effects at the higher frequencies, the Hashash et al. (2018) 

model is modified by taking the minimum value of 0∂∏ over all frequencies and constrain all higher 

frequencies to take the same value. An example of this method (for input values of 4e~� =	300 m/s 

and =◊ =	0.8 g) is shown in Figure 2-5.  
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To utilize the Hashash et al. (2018) nonlinear model requires the PGA on rock. Since the model is 

for the EAS, an estimate of the PGA (in units g) for the reference site condition is developed as a 

function of the EAS for the reference site condition at 0 = 5 Hz (in units g-sec), given by Equation 

2-12e. The EAS at 0 = 5 Hz is used to estimate PGA because this is approximately the 

predominant frequency of the ground motions and should correlate strongly with the PGA. In 

Figure 2-6, the data used to develop the =◊ - ?@Aµ∆o(0 = 5	DE) relationship are shown. Ground 

motions with =◊ > 0.01g are included, with symbols identifying data within unit ' bins. In Figure 

2-6, =◊ is corrected to the reference site condition using the Abrahamson et al. (2014) linear site 

amplification model, and the ?@A is corrected the reference 4e~� condition using the linear site 

amplification model from this study. The least squares fit given by Equation 2-12e is shown with 

the dashed line. Different ' and distance ranges were evaluated similarly, with minimal 

differences in the slope of the relationship.  
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Figure 2-5. Smoothing of the Hashash et al. (2018) coefficients 0~, 0ê and 0À, and the smoothing procedure 
of term 0∂∏ for example values of 4e~� =	300 m/s and =◊ =	0.8 g. 
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Figure 2-6. Data used to develop the =◊ - ?@Aµ∆o(0 = 5	DE) relationship, where =◊ is the peak ground 
acceleration on rock and ?@Aµ∆o(0 = 5	DE) is the 5 Hz ?@A on rock. Ground motions with 
=◊ > 0.01g are included, with symbols identifying ' bins. =◊ is corrected to the reference site 
condition using the Abrahamson et al. (2014) linear site amplification model, and the ?@A is 
corrected the reference 4e~� condition using the linear site amplification model from this study. 

Depth to Top of Rupture Scaling, &*+,- 

To model differences in the ground motions for surface and buried ruptures, the depth to the top 

of rupture scaling model takes the form: 
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0»hiµ = G‡	min	(Jhiµ, 20) (2 − 14)	 

where G‡ is frequency dependent and Jhiµ is non-negative and measured in km. The Jhiµ scaling 

is capped at 20 km to prevent unbounded scaling with Jhiµ. 

Normal Style of Faulting Effects, &.' 

To model the differences in ground motions for normal style faults, the normal faulting term is: 

0∂∑ = Gn�N∂∑ (2 − 15)	 

where N∂∑ is 1 for normal style faults and 0 for all others, and Gn� is determined in the regression. 

A style of faulting term for reverse events was considered but not included, because this term was 

highly correlated with Jhiµ. Therefore, the reverse style of faulting scaling is captured in 0»hiµ.   

Soil Depth Scaling, &*/ 

To model the scaling with respect to sediment thickness, the Abrahamson et al., (2014) formulation 

is adopted, which is parameterized by the depth to shear wave velocity horizon of 1.0 km/s, Jn 

(units of km). This model takes the form: 

0»n = Gnn \H Ö
min	(Jn, 2.0) + 0.01
Jn◊∆o + 0.01

è (2 − 16Q) 

Gnn = ·

Gnnj																				0LB	4e~� ≤ 200	ñ/5
Gnn„						0LB	200 < 	4e~� ≤ 300	ñ/5
Gnnç						0LB	300 < 	4e~� ≤ 500	ñ/5
Gnnö																				0LB	4e~� > 500	ñ/5

		 (2 − 16â) 
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	Jn◊∆o =
1
1000

exp Ö
−7.67
4
ln Ö
4e~�

ê + 610ê

1360ê + 610ê
èè (2 − 16G) 

where Jn◊∆o is the reference Jn	for the regional model for California and Nevada. Equation 2-16c 

was developed by Chiou and Youngs (2014) to account for regional differences in the 4e~� − Jn 

relationships in the data. Abrahamson et al., (2014) showed that the Jn scaling is dependent on the 

4e~� value and used the 4e~� bins in Equation 2-16b to model this dependence. The soil depth 

scaling is capped to Jn = 2 km based on the range of the data and to avoid unconstrained 

extrapolation. 

Regression Analysis 

The random-effects model is used for the regression analysis following the procedure described 

by Abrahamson and Youngs (1992). This procedure leads to the separation of total residuals into 

between-event residuals (UV) and within-event residuals (UW), following the notation of Al Atik 

et al., (2010). For large numbers of recordings per earthquake, the between-event residual is 

approximately the average difference in logarithmic-space between the observed Intensity 

Measure (IM) from a specific earthquake and the IM predicted by the GMM. The within-event 

residual (UW) is the difference between the IM at a specific site for a given earthquake and the 

median IM predicted by the GMM plus UV. By accounting for repeatable site effects, UW can 

further be partitioned into a site-to-site residual (UA2A) and the single-station within-event residual 

(UWA, also called the within-site residual) (e.g. Villani and Abrahamson, 2015). Using this 

notation, the residuals take the following form: 
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‰ = Ø(Â∆e, Ê) + UV∆ + UA2Ae + UWA∆e	 (2 − 17) 

Uhihjk = ‰ − Ø(Â∆e, Ê) = UV∆ + UA2Ae + UWA∆e	 (2 − 18) 

where ‰ is the natural log of the recorded ground motion IM, Ø(Â∆e, Ê) is the median GMM, Â∆e 

is the vector of explanatory seismological parameters (magnitude, distance, site conditions, etc.), 

Ê is the vector of GMM coefficients, and Uhihjk is the total residual for earthquake C and site 5.  

The residual components UV, UA2A and UWA are well-represented as zero-mean, independent, 

normally distributed random variables with standard deviations Y, Zcdc and Zee, respectively (Al 

Atik et al., 2010). The total standard deviation, X, is expressed as: 

X = {Yd + Zcdc
d + Zeed (2 − 19) 

The regression is performed in a series of steps to prevent trade-off of correlated model coefficients 

and to constrain different components of the model using the data relevant to each piece. These 

steps are given in Table 2-2, along with the data used and parameters determined from each step. 

In Step 1-a, a data set consisting of larger magnitudes and shorter distances is used to constrain the 

large magnitude scaling and near-source finite-fault saturation, using data from all regions. In 

Steps 1-b through 1-d, the same data set is used, and the remaining source effects are determined. 

In Step 2, the regionalized linear site amplification parameters are determined using the data from 

California and Nevada at distances within 100 km. In Steps 3-a through 3-c, data from California 

and Nevada are included out to 300 km distance. In these regression steps, the regional soil depth 

scaling, anelastic attenuation, and mean spectral shape coefficients are determined. For all steps 
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the regression is performed independently at each of 239 log-spaced frequencies spanning 0.1-24 

Hz.   

Table 2-2. Regression steps. 

Step Data Used 
Parameters Free in the 

Regression 

Parameters 
Smoothed after 
the Regression 

1-a ' > 4, >µπ∫ ≤ 100	òñ, 
all regions 

Gn, Gd, G~, Gy, G∑, Gê, G—, G‘, G‡, Gn�, Gnn Gd, Gê  
(', path) 

1-b Same as 1-a Gn, G~, Gy, G∑, G—, G‘, G‡, Gn�, Gnn G~, Gy, G∑  
(') 

1-c Same as 1-a Gn, GÀ, GŒ, Gœ≈, G—, G‘, G‡, Gn�, Gnn GÀ, GŒ, Gœ≈ 
(path) 

1-d Same as 1-a Gn, G—, G‘, G‡, Gn�, Gnn G‡ 
(Jhiµ) 

1-e Same as 1-a Gn, G—, G‘, Gn�, Gnn	 Gn�	
(N∂∑)	

2 ' > 4, >µπ∫ ≤ 100	òñ 
from CA/Nevada 

Gn, G—, G‘, Gnn	 G‘	
(4e~�)	

3-a ' > 3, >µπ∫ ≤ 300	òñ 

from CA/Nevada 

Gn, G—, Gnn	 Gnn	
(Jn)	

3-b Same as 3-a Gn, G—	 G—	
(Á)	

3-c Same as 3-a Gn	 Gn	

 

Smoothing  

The model coefficients are smoothed in a series of steps as outlined in Table 2-2. Smoothing of 

the coefficients is performed to assure smooth spectra and, in some cases, to constrain the model 
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to a more physical behavior where the data are sparse (Abrahamson et al., 2014). Tables of the 

values of the final smoothed coefficients are available in Appendix B. 

Figure 2-7 through Figure 2-16 show the regressed model coefficients plotted versus frequency, 

before and after smoothing. The coefficients Gd and Gê are frequency independent and are 

determined from regressions in the high frequency range.  The coefficients G~, Gy, and G∑ require 

only minor smoothing to assure smooth spectra in the final model, including extrapolation outside 

the ranges well constrained by data. The smoothing of G— (the anelastic attenuation term) is 

constrained to be nonpositive at all frequencies so that the model does not unintentionally increase 

in amplitude at very large distances. Minimal smoothing is required for the coefficient G‘ (the 

linear 4e~� term). The coefficient G‡ (the Jhiµ term) takes on negative values at low frequencies 

implying small de-amplification of low frequency ground motions with increasing  Jhiµ. The data 

lead to a large drop in Gn� (the normal faulting term) at low frequencies but this is not included in 

the model because the theoretical basis is not clear; instead a frequency-independent constant is 

used (uniform scaling across frequencies) for normal style-of-faulting earthquakes. The Gnn terms 

are smoothed as shown in Figure 2-14, where the uncertainty is largest for Gnnj, which corresponds 

to the lowest 4e~� bin with relatively fewer data. 

The Gn coefficient works collectively with the G~ term to represent the mean spectral shape after 

correcting for all other adjustments. In the regression, unexpected behavior of Gn at low frequencies 

is observed, as shown in Figure 2-16. At frequencies below about 0.3 Hz, the regressed coefficient 

values are equal to or larger than the 0.3 Hz value. If unmodified and combined with the G~ term, 

this would lead to an irregular spectral “bump” at 0 < 0.3 Hz. Following Aki (1967) the mean 
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spectrum should be approximately linear with a 2-slope in this frequency range. Therefore, the Gn 

coefficient is modified at low frequencies by constraining the slope from 0 ≈ 1.0 Hz down to 0.1 

Hz, as shown in Figure 2-16. The difference between the regressed values of Gn and the constrained 

values of Gn is denoted Gnj; this adjustment coefficient is plotted in the lower portion of Figure 2-

16. By introducing the Gnj term, the model predicts smooth, theoretically appropriate spectra at 

low frequencies. This also allows for residuals which are zero-centered, which is required for 

computing the correlations of the residuals between frequencies. To account for this modification, 

the Gnj term must be added to the total standard deviation using Equation 2-21. The standard 

deviation model is discussed further below.   

This unexpected behavior of Gn may be due to bias in the data. At low frequencies, the signal to 

noise ratio is commonly low (Douglas and Boore, 2011). This contributes to the drop off in data 

at low frequencies shown in Figure 2-2. Additionally, at low frequencies, the large epsilon (above 

average) ground motions are more likely to be above the signal to noise ratio, and therefore, be 

included in the database. Likewise, the below average ground motions are more likely to be below 

this ratio and be excluded. The net effect may be that, for the FAS at low frequencies, the database 

is biased towards higher ground motions. Observing the data, the mean spectra for certain binned 

magnitude and distance ranges contain this feature. As an example, Figure 2-17 shows the 

geometric mean spectra of a subset of the data used in the analysis. This figure is created using 

recordings from strike-slip earthquakes with >µπ∫ < 50 km, for ' bins one unit wide, and adjusted 

to the reference 4e~� condition. Below about 0.3 Hz, the bump in the spectral shape in the data that 

causes the increase of Gn is evident, especially for the data with ' > 7 and ' < 5.  
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Other physical explanations of the cause of the increase in coefficient Gn are not apparent. To check 

that long period basin effects are not the cause, the mean spectra are examined in the same way, 

but only including records with Jn < 0.15 km, and the same behavior is observed. To further test 

if basin effects are not adequately captured by the model, Gn is fixed to the constrained shape and 

the residuals are mapped. These residuals do not have regional or spatial trends, implying that 

basin effects are not the culprit. Understanding the physical cause of the long-period shape of the 

spectrum will be evaluated further in a future study. 

 

Figure 2-7. Smoothing of source scaling (Gd) and near source geometric spreading coefficients (Gê) 
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Figure 2-8. Smoothing of the source scaling coefficient, G~. 

 

Figure 2-9. Smoothing of the source scaling coefficient, Gy. 
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Figure 2-10. Smoothing of the source scaling coefficient, G∑. 

 

Figure 2-11. Smoothing of the Jhiµ scaling coefficient, G‡. 
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Figure 2-12. Smoothing of the N∂∑ style of faulting coefficient, Gn�. 

 

Figure 2-13. Smoothing of the linear 4e~� scaling coefficient, G‘. 
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Figure 2-14. Smoothing of the Jn scaling coefficients, Gnn. 
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Figure 2-15. Smoothing of the anelastic attenuation coefficient, G—. 
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Figure 2-16. Smoothing of the coefficient, Gn, and adjustment coefficient Gnj. 
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Figure 2-17. The geometric mean EAS spectra of the data used in the analysis, calculated using 
recordings from strike-slip earthquakes with >µπ∫ < 50 km, for ' bins one unit wide, and 

adjusted to the reference 4e~� condition. 

Extrapolation to 100 Hz 

Model coefficients are obtained by regression for frequencies up to 24 Hz. At high frequencies, 

the FAS decays rapidly (Hanks 1982; Anderson and Hough, 1984). Anderson and Hough (1984) 

introduced the spectral decay factor kappa (È) to model the rate of the decrease, where the 
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amplitude of the log(FAS) decays linearly versus frequency (linear spaced), and È is related to the 

slope. The total site amplification is the combined effect of crustal amplification and damping (È 

and Q), but the effect of È is so strong that it controls the spectral decay of the FAS at high 

frequencies and is the only parameter specified in the extrapolation. The model is extrapolated 

using Equation 2-20: 

Í(È, 0) = exp	(−ëÈ0) (2 − 20Q)

\H(È) = −0.4 ∗ \H ’
4e~�
760
÷ − 3.5	 (2 − 20â)

?@A(0 > 0≈jÎ		) = ?@A(0≈jÎ) ∗ Í(È, 0 − 0≈jÎ) (2 − 20G)

 

where Í(È, 0) is the Anderson and Hough (1984) diminution operator and 0≈jÎ is the frequency 

beyond which the extrapolation occurs; 0≈jÎ = 24 Hz. The parameter È is estimated from 4e~� 

using the relationship given by Equation 2-20b. This relationship is selected based on the range of 

È� − 4e~�	correlation models presented in Figure 2 of Ktenidou et al., (2014). The scatter observed 

in these correlations is large, as described in Ktenidou et al., (2014).    

Residuals 

The model is evaluated by checking the residuals from the regression analysis as functions of the 

main model parameters. Example figures are included below, and a larger set of residual figures 

are available in Appendix A. 

Between-event and Between-site Residuals 

Examples of the dependence on the source parameters of the between-event residuals at 0 =	0.2, 

1.0, and 5.0 Hz are given in Figure 2-18 through Figure 2-20. In these figures, the diamond shaped 
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markers represent events from California and Nevada, and circles represent events from all other 

regions. There is not a strong magnitude dependence of the UV. For Jhiµ, there is no trend in the 

residuals at high frequencies, where the model increases the ground motion with increasing Jhiµ. 

There is a potential difference in Jhiµ scaling between regions at low to moderate frequencies, an 

effect which should be evaluated further in the future. For N∂∑, there is also no trend in the 

residuals at high frequencies, but at the lower frequencies, potential regional differences exist. The 

normal faulting term is constrained by sparse data (10 events at 0.2 Hz, including 6 from Italy), so 

this term is not refined further. Figure 2-18 through Figure 2-20 also show the dependence of the 

between-site residuals on 4e~�. Overall, there is no trend in UA2A versus 4e~�. The standard 

deviation of these residuals (Zcdc) is comparable to Y at frequencies greater than about 2 Hz. 
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Figure 2-18. Between-event residuals (UV∆) versus ', Jhiµ, and N∂∑ and between-site residuals (UA2Ae) 
versus 4e~�, for 0 = 0.2 Hz.  
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Figure 2-19. Between-event residuals (UV∆) versus ', Jhiµ, and N∂∑ and between-site residuals (UA2Ae) 
versus 4e~�, for 0 = 1 Hz. 
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Figure 2-20. Between-event residuals (UV∆) versus ', Jhiµ, and N∂∑ and between-site residuals (UA2Ae) 
versus 4e~�, 0 = 5 Hz.   
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Within-site Residuals 

Examples of the dependence on the model parameters of the within-site residuals at 0 =	0.2, 1.0, 

and 5.0 Hz are given in Figure 2-21 through Figure 2-23. The filled circles are individual residuals, 

and the black diamonds with whiskers represent the mean and 95% confidence interval of the mean 

for binned ranges of the model parameter. Overall, there is no trend observed in UWA versus 

moment magnitude. The linear site response model is evaluated through the 4e~� and Jn 

dependence of the residuals. Overall, no strong trends are observed against 4e~�, except for the 

highest 4e~� values at low frequencies, where the residuals are slightly positive, indicating model 

under-prediction. The data are very sparse in this range (6 records with 4e~� >1500 m/s and 106 

records with 4e~� >1200 m/s). No strong Jn dependencies on the residuals are observed. 

The distance scaling of the model is evaluated using the distance-dependence of UWA as shown in 

Figure 2-21 through Figure 2-23. Additionally, the distance dependence is evaluated using 

magnitude binned residuals. Examples of the distance dependence binned by magnitude are shown 

in Figure 2-24 through Figure 2-26, where the magnitude bin ranges are given in the figure legends. 

In the distance range of about 5 – 100 km, there are no strong trends or biases of the residuals. At 

low frequencies, for distances beyond 100 km and in the '5.5-6.5 bin, the UWA residuals are 

biased positive. This is likely due to the relatively limited data within this bin, and that the model 

scaling is appropriate even though these particular residuals are not zero-centered. Thus, neither 

the magnitude nor distance scaling are adjusted to center these residuals. At distances shorter than 

1 km and for frequencies greater than about 2 Hz, there is a small systematic negative bias in the 

residuals (Figure 2-23). This means the near-fault saturation in this model is not as strong as 
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indicated by the data. Graizer (2018) chose to incorporate oversaturation (a peak in the distance 

scaling at about 5 km) into his ground motion models. The oversaturation of distance scaling is 

intentionally avoided in this model. Because the available ground-motion data is extremely sparse 

at such close distances, this model is compared with the saturation from finite-fault earthquake 

simulations (see Model Summary section of this paper for more details). Based on these results, 

and on the sparsity of the data, the small bias in the short-distance residuals is accepted. 

The distance dependence of the model is also compared with data from four well-recorded WUS 

earthquakes in Figure 2-27 through Figure 2-30: 1989 '6.9 Loma Prieta, 2010 '7.2 El Mayor-

Cucapah, 1992 '7.3 Landers, and 1994 '6.7 Northridge. In these figures, the top panels compare 

the recorded ?@A with the model-predicted ?@A at each site, including the event term for that 

earthquake. The lower panels show the within-event residuals for the same sites versus >µπ∫. 

Residuals for El Mayor-Cucapah, the most well-recorded large earthquake in California, show no 

bias or trend at either frequency. Besides a few outliers, the remaining three events have 

attenuation which does not disagree with the median model and is captured on average. 
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Figure 2-21. Within-site residuals (UWA∆e) versus ', >µπ∫, 4e~�, and Jn for 0 = 0.2 Hz. 
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Figure 2-22. Within-site residuals (UWA∆e) versus ', >µπ∫, 4e~�, and Jn for 0 = 1 Hz. 
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Figure 2-23. Within-site residuals (UWA∆e) versus ', >µπ∫, 4e~�, and Jn for 0 = 5 Hz. 
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Figure 2-24. Within-site residuals (UWA∆e) versus >µπ∫, binned by ' for 0 = 0.2 Hz. 
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Figure 2-25. Within-site residuals (UWA∆e) versus >µπ∫, binned by ' for 0 = 1 Hz. 
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Figure 2-26. Within-site residuals (UWA∆e) versus >µπ∫, binned by ' for 0 = 5 Hz. 
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Figure 2-27. Comparison of the model distance attenuation with the '6.93 Loma Prieta data for 0 = 0.5 
Hz (left) and 5 Hz (right).  

 

Figure 2-28. Comparison of the model distance attenuation with the '7.2 El Mayor-Cucapah data for 0 = 
0.5 Hz (left) and 5 Hz (right).  
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Figure 2-29. Comparison of the model distance attenuation with the '7.28 Landers data for 0 = 0.5 Hz 
(left) and 5 Hz (right).  

 

Figure 2-30. Comparison of the model distance attenuation with the '6.69 Northridge data for 0 = 0.5 
Hz (left) and 5 Hz (right).  
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Model Summary 

Median Model 

In this section, the median model behavior is summarized. In Figure 2-31, the median EAS spectra 

from this model (solid lines) are compared with spectra from the additive double-corner-frequency 

source spectral model (dashed lines) described in Boore et al., (2014). The double-corner-

frequency spectra are computed using typical parameters for the WUS given by Boore (2003), 

including shear-wave velocity = 3.5 km/s, density = 2.72 gm/cm3, stress parameter ∆X = 50 bars, 

È = 0.025 sec, the Boore and Thompson (2015) finite fault distance adjustment, the Boore and 

Thompson (2014) path duration for western North America, and the Boore (2016) crustal 

amplification model. The point-source spectral models are calculated using the software package 

SMSIM (Boore, 2005). The median model spectra are computed for a strike-slip scenario at 

>µπ∫ = 30 km, with Jhiµ = 0 km, and with the reference 4e~� and Jn conditions. Figure 2-31 

shows overall good agreement between the median model and the additive double-corner-

frequency source spectral model with typical WUS parameters, including a well-defined decrease 

in corner frequency with increasing '. At frequencies well below the corner frequency, the spectra 

should be directly proportional to seismic moment (I�), and since I� = 10n.À'õnŒ.�À, the spectra 

in this range should scale by 10n.À ≈ 31.6 for one magnitude unit. This approximate scaling is 

evident in Figure 2-31. At frequencies between 10 – 30 Hz, there is a dip in the model spectra 

compared with the point source spectra. This may be related to the region-specific attenuation 

parameters (geometric spreading and Q), where the point source spectra use generalized models 

for these attenuation parameters. The È-based extrapolation in the model spectra begins at 24 Hz. 
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In Figure 2-32, the median EAS spectra from this model are shown for a set of scenarios. Panels 

(a) and (b) show the spectra for a vertical strike slip scenario at >µπ∫ = 30 km with 4e~� = 1000 

and 500 m/s, respectively. In (c) and (d) are the spectra for the same 4e~� but at >µπ∫ = 1 km.  

In Figure 2-33, the distance scaling of the median model is shown for 0 = 0.2, 1, 5, and 20 Hz. 

All spectra in this figure are from a strike-slip earthquake rupturing the ground surface with 

reference 4e~� and Jn conditions. The distance scaling is compared with the Chiou and Youngs 

(2014) model for PSA (dashed lines) by scaling the PSA values to the >µπ∫ = 0.1 km EAS values. 

At 0.2 Hz, where the Q term coefficient (G—) is very small, the distance scaling is controlled by the 

geometric spreading terms, which includes a transition to R-0.5 scaling to model surface wave 

geometric spreading at larger distances. At increasing frequencies, the effect of the Q term 

becomes more pronounced. In Figure 2-33(d), the distance scaling is shown to deviate significantly 

from the Chiou and Youngs (2014) model, which has a magnitude dependence on Q. This 

difference can be explained by the differences between EAS and PSA. At high frequencies, the 

PSA is strongly influenced by the predominant ground-motion frequency, as discussed above. 

Because of this, the PSA scaling at 20 Hz and 5 Hz are similar, but since the EAS at 20 Hz is 

directly representative of the ground motions in that frequency range, the distance scaling is much 

stronger for 20H than for 5 Hz. 

The ' scaling of the median EAS is shown in Figure 2-34 for a strike-slip surface rupturing 

scenario with reference 4e~� and Jn conditions, for 0 = 0.2, 1, 5, and 20 Hz. In Figure 2-35 through 
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Figure 2-37, the median ' scaling is compared with that from a set of broadband finite-fault 

simulations. The simulations were performed on the SCEC Broadband Platform, (Maechling et 

al., 2015) version 17.3, using simulation methods Graves and Pitarka (2015, also known as GP) 

and Atkinson and Assatourians (2015, also known as EXSIM). Both simulation methods were 

used to develop broadband time histories for vertical strike slip scenarios with a range of ' from 

M6.5 to 8 and with stations arranged on constant >µπ∫ bands. In these figures, the ' scaling is 

shown for >µπ∫ = 3, 10, 20, and 30 km for the median EAS model, the GP simulations, the EXSIM 

simulations, and for the Chiou and Youngs (2014; CY14 hereafter) model for PSA. For the CY14 

PSA, the amplitudes are scaled to the EAS model values at '6.5 for this comparison. The symbols 

identified in the legend represent the mean simulated ?@A over all stations on a given >µπ∫ band, 

and the standard error of the mean.  

The simulations are used to evaluate the near-source saturation of the ' scaling and to compare 

with the scaling implied by the data. Overall, there is less saturation in this GMM than there is in 

CY14 at all frequencies. At very close distances, there is stronger high-frequency saturation in 

EXSIM than in GP. Interestingly, this relationship is inverted at low frequencies. Based on these 

and other comparisons, it is determined the ?@A saturation in this model is not inconsistent with 

the saturation from the simulations. The ?@A should have some scaling at zero distance even 

though the PSA is nearly fully saturated at high frequencies because the PSA procedure involves 

selecting the peak response of the oscillator over all time, meaning it is not affected by duration. 

Conversely, the ?@A will continue to scale for large magnitudes at short distance due to the longer 

source durations. 
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The site response scaling of the median model is summarized for a set of example scenarios in 

Figure 2-38. Panel (a) shows the 4e~� scaling of the median model for a '7 strike-slip earthquake 

rupturing the surface with reference Jn conditions at >µπ∫ = 30 km. The solid lines represent the 

total (linear and nonlinear) 4e~� scaling and the dashed lines represent only the linear portion of 

the 4e~� scaling. Panel (b) shows the Jn scaling of the median model for the same scenario with 

4e~� = 300 m/s. Panel (c) shows the scaling of the modified Hashash et al. (2018) nonlinear site 

term with ', for a scenario with >µπ∫ = 30 km and 4e~� = 300 m/s. Similarly, panel (d) shows 

the scaling of the modified Hashash et al. (2018) nonlinear site term with >µπ∫, for a scenario with 

'7 and 4e~� = 300 m/s. 
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Figure 2-31. Median model spectra for a strike-slip scenario at >µπ∫ = 30 km, with Jhiµ = 0 km, and with 
the reference 4e~� and Jn conditions (solid lines) compared with the additive double-corner 
frequency source spectral model with typical WUS parameters (dashed lines). 
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Figure 2-32. Median model EAS spectra for a set of scenarios described by the parameters in each title.   



 75 

	 	

	 	

Figure 2-33. Distance scaling of the median EAS (solid lines) for a strike-slip scenario with reference 4e~� 
and Jn conditions, for four frequencies. For reference, the distance scaling of the Chiou and 
Youngs (2014) model for PSA is shown for the same scenarios with the dash-dotted lines, where 
the PSA values have been scaled to the >µπ∫ = 0.1 km EAS values. 
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Figure 2-34. ' scaling of the median EAS for a strike-slip surface rupturing scenario with reference 4e~� 
and Jn conditions, for 0 = 0.2, 1, 5, and 20 Hz. 
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Figure 2-35. ' scaling of the median model for four distances, at 0 = 0.5 Hz for a strike-slip earthquake 
rupturing the surface with reference 4e~� and Jn conditions, compared with results from finite-
fault simulations.  



 78 

 

Figure 2-36. ' scaling of the median model for four distances, at 0 = 1 Hz for a strike-slip earthquake 
rupturing the surface with reference 4e~� and Jn conditions, compared with results from finite-
fault simulations.  
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Figure 2-37. ' scaling of the median model for four distances, at 0 = 5 Hz for a strike-slip earthquake 
rupturing the surface with reference 4e~� and Jn conditions, compared with results from finite-
fault simulations.  
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Figure 2-38. (a) 4e~� scaling of the median model for a '7 strike-slip earthquake rupturing the surface 
with reference Jn conditions at >µπ∫ = 30 km. The solid lines represent the total (linear and 
nonlinear) 4e~� scaling and the dashed lines represent only the linear portion of the 4e~� 
scaling. (b) Jn scaling of the median model for the same scenario with 4e~� = 300 m/s. (c) 
scaling of the modified Hashash et al. (2018) nonlinear site term with ', for >µπ∫ = 30 km 
and 4e~� = 300 m/s. (d) scaling of the modified Hashash et al. (2018) nonlinear site term with 
>µπ∫, for '7 and 4e~� = 300 m/s. 
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Standard Deviation Model 

Prediction of the ?@A (Equation 2-9) requires a model for the aleatory variability. The random-

effects method employed leads to the separation of total residuals into between-event residuals 

(UV) site-to-site residuals (UA2A) and single-station within-event residuals (UWA), which have 

variance components Yd, Zcdcd , and 	Zeed , respectively. The total standard deviation model (natural 

logarithm units) is given by Equation 2-21. 

X = {Yd + Zcdc
d + Zeed + Gnj

d (2 − 21) 

Where Gnj is the spectral shape adjustment coefficient (Figure 2-16) which has been added to the 

total standard deviation, as described previously. Figure 2-39 shows the standard deviations for 

each component of Equation 2-21a, as calculated directly from the regression analysis (all 

magnitudes). The increase observed in Y at frequencies greater than about 3 Hz is consistent with 

the behavior of response spectrum models (e.g. Abrahamson et al., 2014, Chiou and Youngs, 

2014). This is believed to be the effect of È, which is related to regional crustal damping, being 

mapped into the between-event terms. For a given earthquake, recordings in close proximity to the 

source will have similar È, and the high frequencies of these recordings may be systematically 

above or below average. If there is a regional difference in kappa, then the regression treats this as 

an event-specific variation, which artificially increases Y. Stafford (2017) also observed an increase 

in the variance components of the FAS with increasing frequency and hypothesized that the 

increase of Zcdc reflects variations in È across different sites. 
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Figure 2-39. Standard deviation components calculated directly from the regression analysis, for all 
magnitudes.   

The magnitude dependence of each aleatory term is fit as shown in Figure 2-40 and is given by 

Equations 22a-c. At low frequencies, the small-magnitude data have higher between-event 

standard deviation. This is also consistent with the Abrahamson et al., (2014) response spectrum 

model, and could be related to the steeper magnitude scaling slope at low magnitudes and the 

uncertainty in small-magnitude source measurements (Abrahamson et al., 2014). The standard 

deviations of the two within-event residuals do not have strong magnitude dependence at low 

frequencies. At higher frequencies, Y does not show strong magnitude dependence, but Zcdc and 

Zee are larger for the small-magnitude data, which is again consistent with the Abrahamson et al., 

(2014) and Chiou and Youngs, (2014) models. Higher within-event variability for small 
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magnitudes may be related to the increased effect of the high-frequency radiation pattern, which 

is reduced for larger magnitude events due to destructive interference (Abrahamson et al., 2014).  

 

Figure 2-40. Magnitude scaling of the standard deviation terms for 0 = 1 and 5 Hz. 
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Y = ·

5n																		0LB	' < 4.0

5n +
5d − 5n
2
(' − 4)					0LB	4.0 ≤ ' ≤ 6.0

5d																		0LB	' > 6.0

							 (2 − 22Q) 

Zcdc = ·

5~																		0LB	' < 4.0

5~ +
5ê − 5~
2
(' − 4)					0LB	4.0 ≤ ' ≤ 6.0

5ê																		0LB	' > 5.5

							 (2 − 22â) 

Zee = ·

5À																		0LB	' < 4.0

5À +
5Œ − 5À
2
(' − 4)					0LB	4.0 ≤ ' ≤ 6.0

5Œ																		0LB	' > 6.0

							 (2 − 22G) 

At frequencies above approximately 20 Hz, the model is constrained to smoothly transition to be 

flat in frequency space for all components of X. The frequency dependence of the standard 

deviation model is shown in Figure 2-41, and examples of the total standard deviation model for a 

set of scenarios are shown in Figure 2-42. Coefficients 5n through 5Œ are given in Appendix B. In 

Figure 2-43, the components of the standard deviation model are compared with those from Bora 

et al., (2015) and Stafford (2017). The Bora et al., (2015) model was developed for smoothed FAS 

from data in Europe, the Mediterranean, and the Middle-East and the Stafford (2017) model was 

developed for unsmoothed FAS from a subset of the NGA-West1 database (Chiou et al., 2008). 
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Figure 2-41. Frequency dependence of the standard deviation model. 
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Figure 2-42. (a) The total standard deviation model for '3, 5, and 7. (b) The median (solid lines) and 
median plus and minus one X (dashed lines) ?@A spectra for '3, 5, and 7 scenarios. 

 

Figure 2-43. Comparison of the standard deviation components between the Bora et al., (2015), Stafford 
(2015) models and this model, for a '5 earthquake. Panels (a) through (d) show the 
comparison of Y, Zcdc, Zcc, and X, respectively. 
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The standard deviation model developed here is linear, meaning it does not account for the effects 

of nonlinear site response. As discussed in Al Atik and Abrahamson (2010) and Abrahamson et 

al., (2014), the nonlinear effects on the standard deviation are influenced by the variability of the 

rock motion, leading to a reduction in the soil motion variability at high frequencies. In 

Abrahamson et al., (2014), the standard deviation of the rock motion is estimated by removing the 

site amplification variability (determined analytically) from the surface motion, and the variability 

of the soil motion is computed using propagation of errors. In a future update of the model, similar 

steps will be taken to account for the effects of nonlinear site response on the standard deviation. 

Range of Applicability 

The model is applicable for shallow crustal earthquakes in California and Nevada. The model is 

developed using a database dominated by California earthquakes, but uses data worldwide to 

constrain the magnitude scaling and geometric spreading. The model is applicable for rupture 

distances of 0 – 300 km, ' 3.0 – 8.0, and over the frequency range 0.1 – 100 Hz. The 4e~� range 

of applicability is 180 – 1500 m/s, although the model is not well constrained for 4e~� values 

greater than 1000 m/s. Models for the median and the aleatory variability of the ?@A are developed.  

Regional models for Japan and Taiwan will be developed in a future update of the model. A model 

for the inter-frequency correlation of !ÏÌc is presented in Chapter 3. 

Limitations and Future Considerations 

The model presented uses the ergodic assumption, as introduced by Anderson and Brune (1999). 

This means that the variability in the data from a broad geographic region (in this case, globally 
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for the magnitude scaling and geometric spreading, and over the California and Nevada for the 

remaining parameters) are assumed to represent the variability of the ground motions over time 

for a given site in the target region. With this approach, the model is expected to be appropriate 

for general use in California and Nevada but will be biased for a particular site. In an ergodic 

model, systematic site, path, and source effects are the dominant parts of the aleatory variability, 

making fully or partially non-ergodic models attractive (Abrahamson, 2017). Developing a 

partially non-ergodic model requires repeated observations of source, path, or site effects. For 

example, in this model, with multiple recordings at a site, the median site-specific amplification 

for the site is separated and the intra-event residual is partitioned, shifting that component of 

aleatory variability into an epistemic uncertainty (Walling, 2009). To get a fully non-ergodic 

model, all of the components of the total ground-motion variability that are not representative of 

the variability of future observations of ground motion at a single site must be removed 

(Abrahamson and Hollenback, 2012). 

Incorporating regional differences into a GMM is a first step towards a partially non-ergodic 

assumption (Kuehn and Scherbaum, 2016). To account for the known differences in regional 

crustal structure, regionalized models for Japan and Taiwan can be developed in a future model 

update. This will involve regionalizing the linear 4e~� scaling (G‘), soil depth scaling (Gnn), 

anelastic attenuation (G—) and spectral shape (Gn) coefficients.  

At frequencies above 24 Hz, this model uses a È-based extrapolation. This approach required 

selecting a È − 4e~� relationship from the literature. Future improvements to the model may 
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include explicit data regression at higher frequencies, developing a region-specific È − 4e~� 

relationship, or calculating one directly from the database used. 

The effects of rupture directivity and hanging-wall scaling are not explicitly included in the model. 

Therefore, these effects are accounted for in the total aleatory variability. The hanging-wall effect, 

characterized by increased ground motion amplitudes on the hanging-wall side of dipping ruptures, 

is not well constrained by the data. For NGA-West2, Donahue and Abrahamson (2013) 

investigated these effects for response spectra using finite-fault simulations, and the results were 

incorporated in the Abrahamson et al., (2014) model. In a future update, a similar study for the 

?@A could be incorporated into this model. The effects of rupture directivity on the ?@A is also a 

potential future research topic. Finally, the effects of nonlinear site response on the standard 

deviation are not accounted for in this model, which can be addressed in a future update. 
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Chapter 3: 

An empirical model for the inter-frequency correlation of 

epsilon for Fourier amplitude spectra 
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Abstract 

An empirical ground motion model (GMM) for the inter-frequency correlation of epsilon ("#) for 

smoothed Fourier amplitude spectra (N@A) is presented. This model is developed for the smoothed 

effective amplitude spectrum (?@A), as defined by PEER (Goulet et al., 2018). The ?@A is the 

orientation-independent horizontal component N@A of ground acceleration. Ground-motion data 

are from the Pacific Earthquake Engineering Research Center (PEER) Next Generation 

Attenuation-West 2 (NGA-West2) database (Ancheta et al., 2014), which includes shallow crustal 

earthquakes in active tectonic regions. The normalized residuals (!) are obtained from the Bayless 

and Abrahamson (2018a) GMM, are partitioned into between-event, between-site, and within-site 

components, and a model is developed for the total correlation between frequencies. The total 

correlation model features a two-term exponential decay with the natural logarithm of frequency. 

At higher frequencies, the model differs substantially from previously published models, where 

the ground-motion smoothing technique employed has a large effect on the resulting correlations. 

The empirical "# are not found to have statistically significant magnitude, distance, site parameter, 

or regional dependence. The model is applicable for crustal earthquakes in active tectonic regions 

worldwide, for rupture distances of 0 – 300 km, ' 3.0 – 8.0, and over the frequency range 0.1 – 

24 Hz. Tables for the total correlation model coefficients and covariance matrices are provided in 

the electronic supplement to this dissertation. 
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Introduction 

Residuals from empirical ground-motion models (GMMs, also known as ground-motion 

prediction equations, GMPEs) are typically partitioned into between-event residual (UV), and 

within-event residuals (UW), following the notation of Al Atik et al., (2010). For large number of 

recordings per earthquake, the between-event residual is approximately the average difference 

between the observed Intensity Measure (IM) from a specific earthquake and the IM predicted by 

the GMM. The within-event residual (UW) is the difference between the IM at a specific site for a 

given earthquake and the median IM predicted by the GMM plus UV. By accounting for repeatable 

site effects, UW can further be partitioned into a site-to-site residual (UA2A) and the single-station 

within-event residual (UWA; also called the within-site residual) (e.g. Villani and Abrahamson, 

2015). Using this notation, the residuals take the following form: 

‰∆e = Ø(Â∆e, Ê) + UV∆ + UA2Ae + UWA∆e	 (3 − 1) 

Uhihjk,∆e = ‰∆e − Ø(Â∆e, Ê) = UV∆ + UA2Ae + UWA∆e	 (3 − 2) 

where ‰∆e is the natural logarithm of the recorded ground motion IM for earthquake C and site 5, 

Ø(Â∆e, Ê) is the median GMM, Â∆e is the vector of explanatory seismological parameters 

(magnitude, distance, site conditions, etc.), Ê is the vector of GMM coefficients, and Uhihjk,∆e is 

the total residual. 

The residual components UV, UA2V and UWA are well-represented as zero-mean, independent, 

normally distributed random variables with standard deviations Y, Zcdc and Zee, respectively (Al 

Atik et al., 2010). GMM residual components are converted to epsilon (!f, !cdc, and !gc) by 
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normalizing the residuals by their respective standard deviations. Because of the normalization, 

the random variables !f, !cdc, and !gc are represented by standard-normal distributions (mean=0, 

variance=1). If the total residual is used, then the resulting !hihjk will, in general, not have zero 

mean due to the uneven sampling of recordings per earthquake in the data set. 

For a given recording, the values of ! at neighboring periods (l) are generally correlated. For 

example, if a ground motion is stronger than average at l=1.0 s, then it is likely to also be stronger 

than expected at nearby periods, e.g. l=0.8 s or l=1.2 s; however, for a widely-spaced period pair 

(e.g. l=10.0 s compared with l=1.0 s), the ! values will be weakly correlated. The inter-period 

(or equivalently, inter-frequency) correlation coefficient, ", quantifies the relationship of ! values 

between periods for a given recording. 

An empirical GMM is presented for the inter-frequency correlation of epsilon ("#) for smoothed 

Fourier amplitude spectra (FAS). The correlation model is based on recordings from the Pacific 

Earthquake Engineering Research Center (PEER) Next Generation Attenuation-West 2 (NGA-

West2) database (Ancheta et al., 2014), which includes shallow crustal earthquakes in active 

tectonic regions. The normalized residuals (!) are obtained from the GMM described in Chapter 

2. Rather than the traditionally used response spectrum, the GMM from Chapter 2 is developed 

for the median and variance of the smoothed effective amplitude spectrum (?@A), as defined by 

PEER (PEER, 2015). The ?@A is the orientation-independent horizontal component FAS of 

ground acceleration, described below.  
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Chapter Organization 

In this chapter, the correlation of epsilon is briefly reviewed, the ground motion intensity measure 

(IM) used is described, the reasoning behind selecting Fourier amplitudes as the IM is given, the 

development of the correlation model and the sensitivity of the correlation to database subsets is 

described, and the model is compared with other published correlation models.  

Review of the Correlation of ! 

The correlation coefficient of two random variables is a measure of their linear dependence. In this 

case, ! calculated from a large set of ground motions at different frequencies (0) are random 

variates. The correlation coefficient between !(0n) and !(0d) can be estimated using a maximum 

likelihood estimator, the Pearson-product-moment correlation coefficient, " (Fisher, 1958). The 

correlation coefficient for a sample of ! at frequencies 0n and 0d is given by Equation 3-3: 

"#(op),#(oq) =
GLrs!(0n), !(0d)t

X#(op)X#(oq)
=

∑ s!v(0n) − !(0n)xxxxxxxts!v(0d) − !(0d)xxxxxxxty
vzn

{∑ s!v(0n) − !(0n)xxxxxxxt
dy

vzn
{∑ s!v(0d) − !(0d)xxxxxxxt

dy
vzn

(3 − 3) 

where GLr is the covariance, X is the standard deviation, H is the total number of observations, ` is 

the `th observation of !, and !(0n)xxxxxxx and !(0d)xxxxxxx are the sample means of ! at frequencies 0n and 0d, 

respectively. In our applications, ! ̅ is equal to zero, indicating that the GMM is unbiased. The 

relation for "#(op),#(oq) given in Equation 3-3 is reciprocal; the correlation coefficient between two 

given frequencies is the same regardless of which frequency is the conditioning frequency.  
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The total residuals are correlated for a single earthquake, and this effect is removed by separating 

the residual components. To account for all residual terms, the total correlation is calculated as 

Equation 3-4: 

"hihjk(0n, 0d) =
"f(0n, 0d)Y(0n)Y(0d) + "cdc(0n, 0d)Zcdc(0n)Zcdc(0d) + "gc(0n, 0d)Zee(0n)Zee(0d)

X(0n)X(0d)
(3 − 4)

 

where "f(0n, 0d) is the correlation of the normalized between-event residuals, "cdc(0n, 0d) is the 

correlation of the normalized site-to-site residuals, "gc(0n, 0d) is the correlation of the normalized 

single-station within-event residuals, and X is the total standard deviation. Confidence bounds on 

" are based on a variance stabilizing transformation of of ", given in Equation 3-5 (Kutner et al., 

2004). The variance z is given by Equation 3-6, assuming that H is large enough so that z has an 

approximately normal distribution. The convergence of E to a normal distribution is very rapid as 

H increases (Bradley, 2011).  

E = KQHℎõn(") =
1
2
\H ’
1 + "
1 − "

÷ (3 − 5) 

4QB(E) =
1
H − 3

(3 − 6) 

Using a database of partitioned residuals, the calculation of "#(op),#(oq) can be repeated for every 

frequency pair of interest. Figure 3-1 shows a graphical representation of this step at three example 

frequency pairs. The resulting correlation coefficients for each pair of frequencies can be saved as 

tables (e.g. Abrahamson et al., 2014; Al Atik, 2011; Akkar et al., 2014; Azarbakht et al., 2014; 

Jayaram et al., 2011), or can be empirically modeled. For modern GMMs, models of the correlation 
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of ! are commonly created for the acceleration response spectrum (PSA; e.g. Baker and Cornell, 

2006; Baker and Bradley, 2017; Baker and Jayaram, 2008; Cimellaro 2013; Goda and Atkinson, 

2009; Abrahamson et al., 2014). Recently, Stafford (2017) developed a correlation model for ! 

from FAS. This model, and the development methodology, is summarized and compared with the 

developed model in the Model Comparison section. 

The physical meaning of "# and its relevance for structural response is described in Chapter 4. In 

summary, the parameter ! is an indicator of the peaks and troughs at a given frequency in a 

spectrum, and "# characterizes the relative width of these extrema. The width of peaks and troughs 

in ground-motion spectra have relevance in risk because the variability in the dynamic structural 

response can be under-estimated if the correlation in simulated ground motions is too low. 

	 	 	

Figure 3-1. ! values at pairs of frequencies, exhibiting the correlation dependent on frequency spacing. 
Left: 0n	= 0.2 Hz and 0d	= 5.0 Hz. Middle: 0n	= 0.2 Hz and 0d	= 0.3 Hz. Right: 0n	= 0.2 Hz and 
0d	= 0.2 Hz 
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EAS Ground Motion Intensity Measure 

The ?@A is defined in Goulet et al., (2018) and is calculated for an orthogonal pair of FAS using 

Equation 3-7:  

?@A(0) = Ä
1
2
[N@AÇÉn(0)d + N@AÇÉd(0)d] (3 − 7) 

where N@AÇÉn and N@AÇÉn are the F@A of the two orthogonal horizontal components of a three 

component time series, and 0 is the frequency in Hz. The ?@A is independent of the orientation of 

the instrument, and in this way, is compatible with the input required to use random vibration 

theory to compute the orientation-independent PSA from the N@A (Goulet et al., 2015). The ?@A 

is smoothed using the log10-scale Konno and Ohmachi (1998) smoothing window, which has 

weights and window parameter values described in Kottke et al., (2018). The smoothing of the 

?@A has a direct impact on "#. By using the smoothed ?@A, consistency is maintained with the 

PEER database and with other PEER projects, including the NGA-East empirical N@A models 

(Goulet et al., 2018) and the ?@A model described in Chapter 2. The ?@A are processed by PEER 

following the procedure of Kishida et al., (2016). 

The correlation model developed here is based on the residuals and variance for the GMM 

described in Chapter 2, therefore, the correlation model is for the inter-frequency correlation of 

epsilon for the smoothed ?@A ("#,ÏÌc). For notational brevity, the ?@A subscript is dropped 

hereafter and is implied unless noted otherwise. Similarly, if not stated explicitly, the term ‘inter-
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frequency’ is implied in all uses of the word ‘correlation’ in this chapter, as this is the only type of 

correlation evaluated.  

On the Selection of Fourier Amplitudes 

In seismic hazard and earthquake engineering applications, the pseudo-spectral acceleration of a 

5% damped single degree of freedom oscillator (also referred to as an acceleration response 

spectrum, or PSA) is a commonly used IM. PSA is useful for many applications; however, it has 

drawbacks. The FAS is a more direct representation of the frequency content of the ground motions 

than PSA and is better understood by seismologists. This leads to several advantages, both in the 

empirical modeling and in forward application.  

Chapter 2 illustrates that oscillators with different natural frequencies are controlled by different 

frequency ranges of the ground motion. At relatively higher oscillator frequencies, where there is 

little energy left to resonate the oscillator, the PSA ordinates are dominated by a wide frequency 

band of the ground motion that ultimately equals the integration over the entire spectrum of the 

input ground motion (Bora at al., 2016). The short-period PSA is then controlled by the dominant 

period of the input ground motion, rather than the natural period of the oscillator. Therefore, as 

recognized by Carlton and Abrahamson (2014), at periods smaller than the peak period (l∫), the 

!«cÌ values will be more correlated with the !«cÌ values of l∫ than for other periods with similar 

spacing. This effect can be observed as the reversal and increase in the Baker and Jayaram (2008) 

PSA correlation coefficients at short periods, which is discussed further in the section titled Model 

Comparison. 



 99 

In summary, PSA provides the spectrum of peak response from a SDOF system, which is 

influenced by a range of frequencies, and the breadth of that range is dependent on the oscillator 

period. The FAS provides a more direct representation of the frequency content of the ground 

motions, and because the Fourier transform is a linear operation, the FAS is a more straightforward 

representation of the ground motion. Additionally, using FAS more easily facilitates future 

calibration of the inter-frequency correlation of ground-motion simulation methods (e.g. Chapters 

3 and 4) because there is not a reversal of the correlation coefficients at high frequencies. 

Inter-Frequency Correlation Model 

The subset of the NGA-West2 ground-motion database used to develop the model is described in 

Chapter 2; the data used is dominated by California earthquakes, but takes advantage of crustal 

earthquake data worldwide to constrain the magnitude scaling and geometric spreading. 

Additionally, a broader subset of data is used for testing regional variations of the correlation, as 

described further in the section titled Dependence of the Correlation on Data Subsets. The 

partitioned ?@A residuals are used over the empirical frequency range of the ?@A model; 0.1-24 

Hz. The database accounts for the usable frequency range limitations of each record, and for each 

frequency pair, the records are only utilized in the correlation calculation if both frequencies fall 

within the usable range. The contour plot shown in Figure 3-2 displays the amount of records (i.e. 

!’s) used at each pair of regression frequencies. 
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Figure 3-2. Number of recordings (!) used at each pair of frequencies for the correlation calculations, 
(left) the between-event component, (middle) the between-site component, (right) the within-
site component. 

 

Figure 3-3. Standard deviation components of the Bayless and Abrahamson (2018a) EAS GMM. 

To begin, the correlation coefficient, "#, is calculated for each of the normalized residual 

components (!f, !cdc and !gc) at each pair of modeled frequencies. The total correlation (Equation 
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3-4) is calculated using "# of each residual component and with the component standard deviations 

shown in Figure 3-3. Figure 3-3 shows that the between-event residual standard deviation (Y) is 

larger than the other to standard deviation components at frequencies below 1 Hz, and above 1 Hz, 

the values of all three components are comparable. As a result, the between-event correlation 

contributes significantly to the total correlation (Equation 3-4). This is different from response 

spectra, where the within-event standard deviation is often significantly larger than the between-

event standard deviation, so the total correlations mostly reflect the within-event correlations 

(Stafford, 2017). The resulting correlations are presented as contours in Figure 3-4. These figures 

are symmetric about the 1:1 line because correlation coefficient between two frequencies is the 

same regardless of which frequency is the conditioning frequency. The four correlation coefficient 

matrices shown in Figure 3-4 are provided in the electronic supplement to this article. 

To help visualize these results, Figure 3-5 deconstructs the "# contours from Figure 3-4 into five 

cross-sections at conditioning frequencies: 0.2, 0.5, 2, 5, and 15 Hz. In this figure, the solid lines 

are the "# cross-sections and the dashed lines represent the 95% confidence interval of "# (Kutner 

et al., 2004).



 102 

 

	 	

	 	

Figure 3-4. Empirical "# contours, showing (a) the between-event component, (b) the between-site 
component, (c) the within-site component, and (d) the total. 
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Figure 3-5. Empirical "# cross-sections versus frequency at conditioning frequencies 0.2, 0.5, 2, 5, and 15 
Hz (solid lines), with 95% confidence bounds on " (dashed lines), for (a) the between-event 
component, (b) the between-site component, (c) the within-site component, and (d) the total 
correlation. 
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Between-event empirical correlation 

The between-event empirical "# cross-sections are displayed in Figure 3-5a. Of the residual 

components, the confidence intervals on these correlation coefficients are the widest because there 

are the fewest samples of the between-event terms (earthquakes) for calculating "#. Figure 3-5a 

shows that the between-event "# contributes significantly to the "#,hihjk and that some frequency 

dependence exists. The between-event "# physically relates to source effects (e.g. stress drop) 

which drive ground motions over a broad frequency range and thus lead to relatively broad inter-

frequency "#. 

Stafford (2017) observed minor magnitude dependence of the between-event empirical "#, and 

attributed these to the variations in the source corner frequency for events of the same magnitude, 

concluding that larger magnitude events should exhibit stronger inter-frequency correlations over 

a broader range of frequencies than smaller magnitude events. The "# model developed here does 

not depend on magnitude; the reasoning behind this decision is described in the section titled 

Dependence of the Correlation on Data Subsets.  

Between-site empirical correlation 

The between-site residual represents the systematic deviation of the observed amplification at a 

site from the median amplification predicted by the model using a 4e~�-based site classification 

(Al Atik et al., 2010). Therefore, the between-site "# represents the inter-frequency correlation of 

the systematic site amplification deviations. The between-site empirical "# cross-sections are 

displayed in Figure 3-5b. These correlations are generally not as strong as the between-event 
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empirical "#, but still contribute significantly to the total correlation. The shape of the "# cross-

sections does not vary strongly with conditioning frequency, especially below 5 Hz. At frequencies 

above 5 Hz, the "# cross-sections broaden mildly. 

Within-site empirical correlation 

The within-site residual component represents the remaining residual after partitioning the random 

effects for the event and the site. The within-site empirical "# cross-sections are shown in Figure 

3-5c. The confidence intervals on these correlation coefficients are close-fitting because there are 

many samples of the within-site residuals for calculating "#. The within-site "# cross-sections are 

characterized by a steep decay at frequencies very close to the conditioning frequency, followed 

by a relatively flat slope at frequencies farther away from the conditioning frequency. In general, 

the strength of the within-site component inter-frequency correlations are substantially lower than 

the other residual components. 

Total correlation model 

The total inter-frequency "# cross-sections, calculated using Equation 3-4, are shown in Figure 3-

5d. Some frequency dependence is observed; if the correlation were independent of the 

conditioning frequency, all the contour lines on Figure 3-4d would be parallel. The contours are 

not parallel, indicating a minor frequency dependence of the inter-period correlations. For 

example, the 0.2 Hz correlation cross-section in Figure 3-5d drops off more rapidly moving away 

from the conditioning frequency and has a different overall shape than the cross-section 

conditioned at 15 Hz. The broader correlations at high frequencies are the result of the log-scale 
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smoothing window used on the ?@A. Initially, the correlations were modeled independently of the 

conditioning frequency with an exponential drop off in log-frequency space. The simplicity of this 

approach had a few advantages. First, it guarantees to produce a positive definite covariance 

matrix, which is a favorable feature for simulating realizations of ground motions. Second, a 

simple model was a good starting point for evaluating the correlation in ground-motion 

simulations. The frequency-independent model was a good fit to the empirical correlations on 

average, but was generally too broad at low frequencies, and too narrow at high frequencies; 

therefore, the total inter-frequency "# are fit with a slightly more complex, frequency-dependent 

model. The frequency-dependent model allows for more robust evaluations of the simulations, and 

for future applications of the model to incorporate correlations as similar to the data as possible.  

Figure 3-6 shows the total "# contours (Figure 3-4d) in yet another manner; only the upper 

triangular part of the symmetric correlation matrix is plotted. Each line in the top panel is the 

empirical total correlation coefficients for one of 239 conditioning frequencies, indicated by the 

frequency with correlation value 1. Each of these correlation contours are fit independently to 

develop the correlation model. The bottom panel of Figure 3-6 show a subset of the total empirical 

correlation coefficients, along with the empirical model. The model contours in the bottom panel 

of Figure 3-6 are assigned different line weights subjectively to identify frequency ranges with 

significantly different shapes. 

The total "# empirical model takes the form given in Equations 3-8 through 3-11, 
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"#,hihjk,∑iö∆k(0n, 0d) = KQHℎ	[A(0≈)C
f(oÔ)∗o› + 	C(0≈)C

Ò(oÔ)∗o›] (3 − 8)

0µ = Ú\H ’
0n
0d
÷Ú (3 − 9)

0≈ = ñ`H(0n, 0d) (3 − 10)
`0	0n = 0d,			"#,hihjk,∑iö∆k(0n, 0d) = 1	 (3 − 11)

 

where 0n and 0n are the two frequencies considered, KQHℎ is the hyperbolic tangent, A, B, _, and Í 

are frequency-dependent constants, 0µ is the absolute value of the natural log-ratio of the two 

frequencies, and 0≈ is the minimum of the two frequencies. The model in Equation 3-8 is a two-

term exponential decay with the natural logarithm of frequency. Two exponential terms are 

required to model the shape of the correlation cross-sections (e.g. Figure 3-5d) which starts off 

with a steep decay at frequencies very close to the conditioning frequency, and then flattens as the 

log ratio of frequencies increases. Equation 3-8 includes the hyperbolic tangent operator because 

the regression is performed on Fisher-transformed values of the correlation (Equation 3-5), which 

results in approximately normally distributed variables, z. This transformation emphasizes the fit 

to the higher correlation values, which are the priority for model accuracy. The Fisher 

transformation is undefined for "# = 1, so the correlation model is set to be unity when 0n = 0d 

(Equation 3-11). The frequency dependence of coefficients A, B, _, and Í is shown in Figure 3-7 

and values are given in the electronic supplement to this dissertation.  

The total "# empirical model contours and cross-sections are shown in Figure 3-8. The empirical 

model compares favorably with the empirical correlations, especially at high correlation values 

which are emphasized in the regression using the Fisher-transformation (Equation 3-5).  
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Figure 3-6. Top: Empirical total correlation coefficients for 239 conditioning frequencies. Bottom: A subset 
of the total empirical correlation coefficients (solid lines), along with the model (dashed lines). 
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Figure 3-7. Frequency dependence of the "#,hihjk empirical model coefficients. 

 

	 	

Figure 3-8. Left: Empirical model "#,hihjk contours. Right: Empirical model "#,hihjk cross-sections (dashed 
lines), compared with empirical cross-sections (solid lines). 
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Model Application 

The total "# empirical model is developed using the PEER NGA-West2 ?@A database (Ancheta 

et al., 2014), and is not found to have strong magnitude, distance, site parameter, or regional 

dependence (discussed further below). Therefore, the model is applicable for crustal earthquakes 

in active tectonic regions worldwide. The model is applicable for rupture distances of 0 – 300 km, 

' 3.0 – 8.0, and over the frequency range 0.1 – 24 Hz. At frequencies outside this range, the model 

has not been tested. If extrapolation is required, using the values for coefficients A, B, _, and Í at 

either 0 =	0.1 or 0 = 24 Hz is recommended, for extrapolating to lower and higher frequencies, 

respectively. Tables for the total "# model coefficients and covariance matrices are provided in the 

electronic supplement to this dissertation. 

Model Comparison  

In this section, the model is compared with two other empirical models for "#.  

Comparison with Baker and Jayaram (2008) 

Baker and Jayaram (2008) developed an inter-period correlation model for within-event ! based 

on ]A@. Using an updated database, Baker and Bradley (2017) confirmed that the updated 

correlations were largely consistent with the Baker and Jayaram (2008) model. In ]A@ GMMs, the 

within-site and between-site residuals are usually combined when within-event correlations are 

computed, and the within-event standard deviation is often significantly larger than the between-

event standard deviation, so the total correlations mostly reflect the within-event correlations 

(Stafford, 2017). The Baker and Jayaram (2008) contours derived from within-event ! for ]A@ are 
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shown in Figure 3-9. An important difference between the contours derived from ?@A (Figure 3-

4) and those from ]A@ is the behavior at high frequencies. The ]A@ contours in Figure 3-9 broaden 

substantially at high frequencies (short periods); this is because of the wide frequency range that 

influences the short-period ]A@, as discussed previously. The ?@A contours do not behave this 

way because the Fourier transform operation at each frequency bin is independent of neighboring 

bins. For frequencies below about 10 Hz, the Baker and Jayaram (2008) model is independent of 

the conditioning frequency. 

 

Figure 3-9. Baker and Jayaram (2008) ]A@ correlation model contours, developed from the within-event 
residuals of NGA-West GMMs. 

Comparison with Stafford (2017) 

Stafford (2017; S17 hereafter) used a subset of the NGA-West1 database to develop models for 

the inter-frequency "# and variance of FAS. S17 modeled the FAS using two approaches: first by 

adapting the Yenier and Atkinson (2015) FAS model to the data, and second, by performing a 

regression to the data with a simple GMM at each frequency independently. Like this study, S17 
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partitioned the residuals into between-event, between-site and within-site components. S17 used 

unsmoothed FAS ordinates in the model development, which is an important distinction from the 

approach presented here and has an effect on the resulting models, as shown below. Additionally, 

the S17 model used both as-recorded horizontal components of the ground-motions, as opposed to 

an orientation-independent horizontal component, such as the ?@A used here. 

Figure 3-10 summarizes the S17 model for the total "# of the unsmoothed FAS over the frequency 

range 0.1 – 24 Hz, assuming a source corner frequency of 0.08 Hz. In panel (b), the S17 total "# 

model cross-sections are compared with the total "# model developed here. The S17 total "# model 

features more frequency dependence and at high frequencies, has a much stronger decay of the 

correlations in the vicinity of the conditioning frequency than the model developed here. The large 

differences in high frequency "# models are likely the result of the different smoothing techniques 

employed. The smoothing averages the ?@A in log-spaced frequency bands, which increases the 

correlation between frequencies. As mentioned previously, the smoothing is done to maintain 

consistency with the PEER database and with models developed in other studies using the PEER 

database. At frequencies below 0.2 Hz, the S17 exponential decay near the conditioning frequency 

is slightly weaker than the model developed here, but the differences are smaller. These differences 

can be attributed to the combination of differences described above: ground-motion component, 

database, smoothing technique, and ground-motion model used for computing the residuals.  

S17 observed minor magnitude dependence of the between-event "#, and attributed these to the 

variations in the source corner frequency for events of the same magnitude, concluding that larger 

magnitude events should exhibit stronger inter-frequency correlations over a broader range of 
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frequencies than smaller magnitude events. Magnitude dependence is not incorporated into the 

total correlation model developed here; the reasoning behind this is described in the following 

section.  

	 	
Figure 3-10. Left: Stafford (2017) "#,hihjk contours using 0ç = 0.08 Hz. Right: Comparison of the two 

"#,hihjk model cross-sections at five conditioning frequencies. 

Dependence of the Correlation on Data Subsets 

There have been conflicting conclusions published about the sensitivity of response spectra 

correlation coefficients to the ground-motion database subsets. Azarbakht et al. (2014), using PSA 

and the NGA-W1 database, concluded that the within-event correlation coefficients had 

meaningful dependencies on the causal magnitudes and distances of the recordings. This 

conclusion differs from those made by several other published studies, including Baker and 

Cornell (2005), Baker and Jayaram (2008), Baker and Bradley (2017), and Carlton and 

Abrahamson (2014). Baker and Bradley (2017) investigated the dependence of PSA inter-period 

correlations on binned data subsets of the PEER NGA-West2 database. They concluded that the 
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correlations show no systematic trends with causal magnitude, distance, or 4e~�. This was the same 

conclusion made by Baker and Jayaram (2008), which was developed using the NGA-West1 

database. Carlton and Abrahamson (2014) concluded that the robustness of generic correlation 

models for PSA is a result of their dependence on spectral shape rather than tectonic region. 

Stafford (2017), working with unsmoothed FAS, found weak magnitude dependence on the 

between-event inter-period correlations, attributing these to the variations in the source corner 

frequency for events with the same magnitude. Stafford (2017) did not observe systematic 

dependence of the between-site or within-site residual correlations on causal magnitude or 

distance. 

To investigate the dependence of the correlations on different seismological parameters, the total 

"# of the ?@A is recalculated for subsets of the data. The subsets are created by binning residuals 

based on magnitude, distance, 4e~�, and earthquake region. The complete list of residual subsets 

analyzed is given in Table 3-1. For each data subset listed in Table 3-1, "# for each component of 

the residuals is calculated and the "# contours and cross-sections are reviewed. As expected, 

deviations from the full database "# occur, but no systematic differences are found based on this 

qualitative assessment.  
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Table 3-1. Data subsets analyzed to investigate "# dependence on seismological parameters. 

Parameter Bins 

M < 4.0, 4.0-5.0, 5.0-6.0, 6.0-7.0, > 7.0 

æ-ø¿ (km) 0-15, 15-30, 30-50, 50-75, 75-100 

¡Ù¬√ (m/s) < 300, 300-500, 500-700, > 700 

Region Western North America (WNA; primarily California), 
All non-WNA, Japan, Taiwan, China, Mediterranean 

 

The dependence is also investigated more methodically by following the procedure taken by Baker 

and Bradley (2017). With this routine, the total "# from each data subset is calculated using the 

GMM residuals from that subset. The total "# for the subset is then compared with the "# from the 

full database. The results of this procedure are summarized in Figure 3-11, where the total 

empirical "# for four frequency pairs are shown for the 20 subsets from Table 3-1. In Figure 3-11, 

the full database total "# for each frequency pair is shown with the solid, horizontal line, with 

dashed lines representing the lower and upper bounds for 95% confidence intervals of these 

coefficients (Kutner et al., 2004). The solid circles are the total "# calculated for each indicated 

data subset, and the triangles indicate 95% confidence intervals of those coefficients. The 95% 

confidence intervals represent the statistical uncertainty in the correlation coefficients due to the 

finite number of samples, and the standard deviation of the samples. If the confidence intervals of 

two groups do not overlap, then the differences in the correlation coefficients of the two groups 

are statistically significant at the 95% confidence level. 
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Figure 3-11. Total "# for four frequency pairs (identified in the legend) for the 20 data subsets from Table 
1. The full database total "# for each frequency pair is shown with the solid, horizontal line, 
and dashed lines represent the lower and upper bounds for 95% confidence intervals of these 
coefficients (Kutner et al., 2004). The solid circles are the total "# calculated for each indicated 
data subset, and the triangles indicate 95% confidence intervals of those coefficients. 

Figure 3-11 panel (a) shows the magnitude binned results, which reveal no systematic trends. The 

largest magnitude bin suffers from the smallest sample size, especially for the between-event 

terms, and has the largest variations from the full database "#. But at each frequency pair the 95% 

confidence intervals for the binned data overlap with those for the full database, indicating that the 

two are not statistically significantly different for this bin. Panel (b) shows the distance binned 

results, which also have overlapping confidence intervals for each frequency pair and bin, 

revealing no apparent dependence of "# on distance. Panel (c) shows the 4e~� binned results. The 

4e~� > 700 m/s bin has the largest deviations from the full database, but no systematic, statistically 
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significant dependencies are observed. Panel (d) shows the results for the regional data subsets, 

where deviations from the full database are stronger than any of the other data subsets examined. 

Panels a, b, and c from Figure 3-11 are from the CA model residuals, but correlations in panel d 

are from residuals for a larger subset of the full NGA-West2 database. The regional subsets have 

overlapping confidence intervals with the full database for each frequency pair except for the Japan 

subset coefficient at 1 and 4 Hz. The WNA, all non-WNA, Japan, and Taiwan regions contain a 

substantial number of events and recordings in this analysis. The China and Mediterranean regions 

have the smallest sample sizes, as indicated by the wide confidence intervals, such that their 

deviations from the full database correlation coefficients are likely not significant, but this should 

be investigated in the future using more data for each region. 

Based on this analysis of the data subsets, no conclusive, systematic relationships are detected 

between "# and the seismological parameters reviewed. The largest differences in correlation 

coefficients occur at widely spaced frequencies, when "# themselves are low. This is an expected 

feature, because of the heteroskedastic (non-constant standard deviation) nature of the correlation 

coefficients. Correlation coefficients with values close to zero have a larger standard deviation 

than coefficients with values close to one, meaning that the confidence intervals for low correlation 

coefficients are wider. This effect can be observed in Figure 3-11 panel (a), where the 95% 

confidence intervals are tight for the 0.9 and 1 Hz pair coefficient, and wide for the 0.3 and 5 Hz 

pair coefficient. As a result, differences between "# at low values are not usually significant. 

Additionally, in practice, the frequency ranges with high correlations are the most important, since 

these are related to the width of peaks and troughs in the spectra, and the wider frequency pairs 

with low correlations are not as impactful. Therefore, it is neither practical nor necessary to include 
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dependencies on the reviewed seismological parameters in the inter-frequency ?@A correlation 

model developed here. This conclusion agrees with the Baker series of conclusions for PSA (Baker 

and Cornell, 2005; Baker and Jayaram, 2008; Baker and Bradley, 2017) and with Carlton and 

Abrahamson (2014). 

Correlation of select well-recorded events 

Since no systematic relationships between "# and magnitude, distance, or site parameter are 

observed, the inter-frequency correlation should approximately agree with the empirical model for 

a given event or set of events. To test this, the residuals from nine events identified by the SCEC 

BBP validation project (Dreger et al., 2015) are used to calculate the inter-frequency "# and 

compare with the empirical model. The SCEC BBP is a collaborative software development 

project, with the objective to integrate complex scientific codes for generating broadband ground-

motion simulations for earthquakes. A key part of the SCEC process is to validate the simulations 

against data from well-recorded earthquakes, as described in the Dreger et al. (2015) validation 

exercise. The nine events from active crustal regions for validating the simulations against data 

are: 2008 Chino Hills, 2007 Alum Rock, 1987 Whittier Narrows, 1986 North Palm Springs, 1994 

Northridge, 1989 Loma Prieta, 1992 Landers, 2000 Tottori, and 2004 Niigata (Goulet et al., 2015).  

Figure 3-12a shows the "#,hihjk contours derived from residuals for these nine events, and Figure 

3-12b compares the "#,hihjk cross-sections with the empirical model. Figure 3-12 supports the 

hypothesis that "#,hihjk should approximately agree with the empirical model for a given event or 

set of events. In this case, departures from the model are observed, especially for the cross-section 
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conditioned at 0.2 Hz, but the 95% confidence bounds on "#,hihjk indicate that differences are not 

statistically significant because these enclose the model over most frequencies. 

	 	
Figure 3-12. Left: Empirical "#,hihjk contours derived from the nine SCEC validation events (Goulet et al., 

2015). Right: "#,hihjk cross-sections from the SCEC events (solid lines), with 95% confidence 
intervals for "#,hihjk (dotted lines) compared with empirical model for "#,hihjk (dashed lines). 

Conclusions 

The empirical model for the inter-frequency correlation of the ?@A developed in this study is 

applicable to shallow crustal earthquakes in active tectonic regions worldwide, for rupture 

distances of 0 – 300 km, magnitude of 3.0 – 8.0, and frequency of 0.1 – 24 Hz.  This correlation 

model can be used to define the inter-frequency correlation in stochastic ground-motion simulation 

methods.  It is also appropriate for use in evaluation and validation studies of the inter-frequency 

correlations from numerical simulations for ground motions that also use the standard ?@A 

approach for smoothing the N@A. These are the topics of Chapters 4 and 5 of this dissertation. 

 



 120 

Chapter 4: 

Evaluation of the inter-frequency correlation of ground motion 

simulations 
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Abstract 

It is shown that the inter-frequency correlation of epsilon ("#) is an essential component of ground 

motions for capturing the variability of structural response that is needed in seismic fragility and 

seismic risk studies. To perform this demonstration, large suites of scenario ground motion 

simulations are generated using the point source stochastic method. Two compatible suites of 

simulations are developed; one suite without any imposed inter-frequency correlation, and one 

with Fourier amplitude ! sampled from a multivariate normal distribution with covariance 

specified by the empirical model developed in Chapter 3. It is illustrated how the effect of "# 

propagates through the structural response and into to seismic risk calculations. Without the 

adequate inter-frequency correlation of ground motions, variability in the structural response may 

be under-estimated. This leads to structural fragilities which are too steep (under-estimated 

dispersion parameter %) and propagates through to non-conservative estimates of seismic risk. 

To assess the current state of multiple existing ground motion simulation methods, their inter-

frequency correlations are compared with empirical models. None of the six finite-fault simulation 

methods tested adequately capture the inter-period correlations over the entire frequency range 

evaluated, although several of the methods show promise, especially at low frequencies. Using the 

correlation of the Fourier spectra provides the developers of the simulation methods better 

feedback in terms of how they can modify their methods that is not clear when using response 

spectra comparisons. Based on the relative differences in the correlations of the Song (2016) source 

method, it appears that changes to the rupture generator may be the most promising approach to 

modifying the long period inter-period correlations. 
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Introduction 

Ground-motion models (GMMs, also known as ground-motion prediction equations, GMPEs, or 

attenuation models) are used for estimating the level of ground shaking at a site, including the 

uncertainty in that level, based on earthquake magnitude, source-to-site distance, local site 

conditions, and other seismological parameters. Among other applications, GMMs are often used 

in probabilistic seismic hazard analyses (PSHA), including those performed to develop the U.S. 

Seismic Design Maps (ASCE, 2016). GMMs can be developed using recorded ground-motions, 

using numerical earthquake simulations, or a combination of both approaches. 

Empirical GMM residuals are the difference, in logarithmic space, between the recorded ground 

shaking and the median ground shaking predicted by the GMM. These residuals are typically 

partitioned into between-event residual (UV), and within-event residuals (UW), following the 

notation of Al Atik et al., (2010). For large numbers of recordings per earthquake, the between-

event residual is approximately the average difference in logarithmic-space between the observed 

Intensity Measure (IM) from a specific earthquake and the IM predicted by the GMM. The within-

event residual (UW) is the difference between the IM at a specific site for a given earthquake and 

the median IM predicted by the GMM plus UV. By accounting for repeatable site effects, UW can 

further be partitioned into a site-to-site residual (UA2A) and the single-station within-event residual 

(UWA) (e.g. Villani and Abrahamson, 2015). 
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The residual components UV, UA2A and UWA are well-represented as zero-mean, independent, 

normally distributed random variables with standard deviations Y, Zcdc and Zee, respectively (Al 

Atik et al., 2010). These GMM residual components are converted to epsilon (!f, !cdc, and !gc) 

by normalizing the residuals by their respective standard deviations. Because of the normalization, 

the random variables !f, !cdc, and !gc are represented by standard-normal distributions (mean=0, 

variance=1). If the total residual is used, then the resulting !hihjk will, in general, not have zero 

mean due to the uneven sampling of recordings per earthquake in the data set. 

For a given recording, the values of ! at neighboring periods (l) are correlated. For example, if a 

ground motion is stronger than average at l=1.0 s, then it is likely to also be stronger than expected 

at nearby periods, e.g. l=0.8 s or l=1.2 s; however, for a widely-spaced period pair (e.g. l=10.0 

s compared with l=1.0 s), the ! values will be weakly correlated. The inter-period correlation 

coefficient, ", quantifies the relationship of ! values between periods for a given recording. 

The correlation coefficient of two random variables is a measure of their linear dependence. In this 

case, ! calculated from a large set of ground motions at different frequencies (0) are random 

variates. The correlation coefficient between !(0n) and !(0d) can be estimated using a maximum 

likelihood estimator, the Pearson-product-moment correlation coefficient, " (Fisher, 1958). The 

correlation coefficient for a sample of ! at frequencies 0n and 0d is given by Equation 4-1, 

"#(op),#(oq) =
GLrs!(0n), !(0d)t

X#(op)X#(oq)
=

∑ s!v(0n) − !(0n)xxxxxxxts!v(0d) − !(0d)xxxxxxxty
vzn

{∑ s!v(0n) − !(0n)xxxxxxxt
dy

vzn
{∑ s!v(0d) − !(0d)xxxxxxxt

dy
vzn

(4 − 1) 
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where GLr is the covariance, X is the standard deviation, H is the total number of observations, ` is 

the `th observation of !, and !(0n)xxxxxxx and !(0d)xxxxxxx are the sample means of ! at frequencies 0n and 0d, 

respectively. ! ̅equal to zero indicates that the GMM is unbiased. The relation for "#(op),#(oq) given 

in Equation 4-1 is reciprocal; the correlation coefficient between two given frequencies is the same 

regardless of which frequency is the conditioning frequency. To account for all residual terms, the 

total correlation is calculated as Equation 4-2, 

"#,hihjk(0n, 0d) =
"f(0n, 0d)Y(0n)Y(0d) + "cdc(0n, 0d)Zcdc(0n)Zcdc(0d) + "gc(0n, 0d)Zee(0n)Zee(0d)

X(0n)X(0d)
(4 − 2)

 

where "f(0n, 0d) is the correlation of the normalized between-event residuals, "cdc(0n, 0d) is the 

correlation of the normalized site-to-site residuals, and "gc(0n, 0d) is the correlation of the 

normalized single-station within-event residuals. 

Using a database of residuals, the calculation of "#(op),#(oq) can be repeated for every frequency 

pair of interest. Figure 4-1 shows a graphical representation of this step at three example frequency 

pairs. The resulting correlation coefficients for each pair of frequencies can be saved as tables (e.g. 

Abrahamson et al., 2013; Al Atik, 2011; Akkar et al., 2014; Azarbakht et al., 2014; Jayaram et al., 

2011), or can be empirically modeled. For modern GMMs, models of the correlation of ! are 

commonly created for PSA (e.g. Baker and Cornell, 2006; Baker and Bradley, 2017; Baker and 

Jayaram, 2008; Cimellaro 2013; Goda and Atkinson, 2009; Abrahamson et al., 2013). Recently, 

correlation models for ! from Fourier amplitude spectra (FAS) have also been developed (e.g. 

Stafford, 2017; and Chapter 3 of this dissertation). 
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Figure 4-1. ! values at pairs of frequencies calculated from a database of ground motions, exhibiting the 
correlation dependent on frequency spacing. Left: 0n	= 0.2 Hz and 0d	= 5.0 Hz. Middle: 0n	= 
0.2 Hz and 0d	= 0.3 Hz. Right: 0n	= 0.2 Hz and 0d	= 0.2 Hz 

 

Physical Meaning and Relevance of "# 

Because larger than average ground motions tend to be from local spectral peaks and lower than 

average ground motions tend to be from local spectral troughs, the parameter ! is an indicator of 

the peaks and troughs at a given frequency in a spectrum. And since "# is a measure of the linear 

dependence of ! between two frequencies, it follows that "# characterizes the relative width of 

these extrema. For example, very high "# (values close to one) over broad frequency pairs indicate 

wide peaks and troughs in the spectra; leading to smoother undulating spectra. Conversely, very 

low "# (values close to zero) between neighboring frequency pairs indicate very narrow peaks and 

troughs; leading to ‘noisy’ looking spectra.  

The generic term ‘spectra’ can refer to either PSA or FAS. PSA spectra are the peak response from 

a single degree of freedom oscillator system. PSA spectra are influenced by a range of frequencies, 

and the breadth of that range is dependent on the oscillator period (Chapter 2) and on the damping. 
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The FAS provides a more direct representation of the frequency content of the ground motions, 

and because the Fourier transform is a linear operation, the FAS is a much more straightforward 

representation of the ground motion and is better understood by seismologists. This simpler 

behavior makes the FAS preferable over PSA for incorporating inter-period correlation into 

numerical methods for ground-motion simulations, and it is the IM adopted in this study. 

Since "# is a measure of the width of spectral peaks, it has relevance in dynamic structural 

response. For linear response, a structure will be sensitive to the frequency content over a range of 

frequencies about the natural frequency of the structures. For the uncorrelated case, if the ! value 

at the natural frequencies is a high positive value (corresponding to a peak), the values of ! at the 

nearby frequencies will be randomly high or low so the response of the structure will increase a 

small factor; however, for the correlated case, the values of ! at the nearby frequencies will tend 

to also be positive values so the response of the structure will increase a larger factor relative to 

the uncorrelated case. During nonlinear seismic response, the effect of the correlation can be even 

greater than for linear response. For nonlinear response, structures can experience softening 

characterized by elongation of their natural vibration period (Lin et al., 2008; Bradford 2007). This 

occurs when damage to the structural elements leads to large strains which reduce the effective 

stiffness and increases effective damping. As a structure softens, its effective fundamental period 

increases and the response will depend on if the structure is softening into a peak or a trough in 

the spectrum. For the correlated case, the chance of softening into a peak or a trough will depend 

on the breadth of a ground motion spectral peak or trough, thereby affecting the structural response. 

The aggregate effect is the variability in structural response is higher for ground motions with 
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realistic "# than for ground motions with unrealistically low "#; this point is demonstrated in the 

following sections of this chapter. 

Chapter Organization 

In this chapter, the effect on structural fragilities of "# is demonstrated, and the "# in existing 

ground-motion simulation methods is evaluated. First, a short summary of the four main 

components of Pacific Earthquake Engineering Research Center’s (PEER) Performance Based 

Earthquake Engineering (PBEE) framework is presented, and this framework is used to define 

structural risk in terms of structural fragility and seismic hazard. A method for developing 

structural fragilities from ground motion simulations is described, and using a generic example, "# 

is shown to be a critical feature of ground motions that should be considered as a validation 

parameter for numerical simulations. A method is developed for generating simulated ground 

motions with appropriate "#. An example of seismic risk for a generic site in southern California 

using this ground-motion simulation method is presented and compared with results using the same 

simulation method but without the correlation. For this example, the propagation of "# to the 

structural response variability and then into seismic risk is illustrated. Finally, the inter-frequency 

correlations of multiple existing ground-motion simulation methods are evaluated and compared  

with empirical models for the correlation.  

Structural Risk in Performance Based Earthquake Engineering 

Following Moehle and Deierlein (2004), PEER’s probabilistic framework for PBEE is separated 

into four main analysis steps: hazard analysis (characterized by a ground motion Intensity 
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Measure, IM), structural analysis (characterized by an Engineering Demand Parameter, EDP), 

damage analysis (characterized by Damage Measure, DM), and loss analysis (characterized by a 

Decision Variable, DV). Using this framework, one can focus solely on the first two analysis steps 

to estimate the EDP hazard, defined as the mean annual rate of exceeding a given structural 

response level. The EDP hazard is given by Equation 4-3, 

ı(?Í] > E) = ∫ ](?Í] > E|=I = ˜)	¯
ö˘(˙∑˚Î)

öÎ
¯

Î
¢˜ (4 − 3)  

where ı(?Í] > E) is the mean annual rate of exceeding EDP value E. ](?Í] > E|=I = ˜) is the 

structural fragility, which is the probability of exceeding EDP value of E given IM = ˜. ı(=I >

˜) is the mean annual rate of exceeding IM value ˜, and ¢ı is the rate of occurrence of IM value 

˜, which is the slope of the IM hazard curve. Therefore, the EDP hazard for exceeding a specified 

value E is comprised of two quantities: the structural fragility, and the ground motion hazard, 

integrated over all relevant IM levels, ˜. 

In this chapter, the selected IMs are 5% damped pseudo-spectral acceleration (PSA) and Fourier 

amplitude spectra (FAS), and the selected EDP is the maximum interstory drift ratio (MIDR), but 

it is noted that the EDP risk framework (Equation 4-2) is applicable to other appropriate IMs and 

EDPs. As interstory drift is commonly adopted as the EDP, it is common to refer to the EDP hazard 

as drift hazard. 
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Structural Risk using Ground Motion Simulations 

Fragilities Developed from Simulations 

A fragility function specifies the probability of a structural consequence (EDP) as a function of 

the ground motion intensity (IM). Fragility functions can be obtained using the Incremental 

Dynamic Analysis (IDA) procedure as a means of integrating structural simulations and ground 

motions (Moehle and Deierlein, 2004; Baker, 2013). With this procedure, using a suite of ground 

motions, structural response calculations are carried out in which the building is subjected to the 

input ground motions having a specified IM amplitude, and the fraction of the ground motions 

exceeding the specified EDP are counted. The process is repeated at increasing IM levels to obtain 

the probability of exceeding the EDP at discrete IM amplitudes. A lognormal cumulative 

distribution function can be fit to the probabilities, e.g Equation 4-4, 

]ovh(?Í] > E|=I = ˜) = Φ[
˝˛(Î)õ˝˛	(ˇ)

! ] (4 − 4)  

where ]ovh(?Í] > E|=I = ˜) is the fitted fragility function, Φ is the CDF of the standard normal 

distribution, " is the IM with median fragility, % is the logarithmic standard deviation of the CDF, 

and " and % are estimated from the IDA results. This method is demonstrated in this chapter. An 

alternative to IDA is the Multiple Stripe Analysis (MSA) method, where ground motions selected 

specifically for the IM amplitude are analyzed, instead of scaling one set of ground motions for 

multiple IM amplitudes (Baker, 2013). MSA uses scenario-specific ground motions for each IM 

level, but because the hazard at long return periods is usually driven by increasing epsilon, not 
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magnitude, the IDA approach has merit. The fundamental impact of the correlation can be 

demonstrated using an IDA, so this is the approach taken in the following example. 

Incorporating "# into Ground Motion Simulations  

The point source (PS) stochastic method for simulating earthquake ground motions, which is based 

on the pioneering work of Brune (1970), Hanks and McGuire (1981) and Boore (1983), among 

others, has been developed and refined over several decades. David Boore formalized the method 

and extended it to the simulation of acceleration time series (Boore, 1983; Boore, 2003). With the 

Boore (2003) method (Boore03 hereafter), a simulated time series is produced using a 

seismological model of the Fourier amplitude spectrum, and assuming the spectrum is distributed 

with random phase angles over a time duration related to the earthquake magnitude and the 

distance between the source and site. Boore (2003) gives a comprehensive description of the 

method; only a brief summary is provided here.  

The classic procedure starts by generating normally distributed noise (Figure 4-2a) and applying a 

time-domain taper with duration consistent with the scenario being considered (Figure 4-2b). The 

tapered noise is transformed into the frequency domain (Figure 4-2c), and the FAS of the noise is 

normalized by the square root of the mean power, such that the FAS has mean power of one (Figure 

4-2d, showing the natural logarithm of these values). The normalized FAS is then shaped to the 

PS Fourier amplitude spectrum of the considered scenario (Figure 4-2e), and inverse transformed 

to the time domain using the phase angles from the tapered time domain noise (Figure 4-2f). 
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Figure 4-2. Illustration of the Boore (2003) procedure for simulating acceleration time series using the 
point-source stochastic method. Each sub-panel is described in the text. 

The Boore03 procedure filtered white noise in the time-domain, resulting in ! with no correlation 

between frequencies. To generate a simulated time series with realistic inter-period correlation, 

the Boore03 procedure can be modified as follows. First, a symmetric, positive definite covariance 

matrix (Σ) for the inter-frequency "#,hihjk of FAS is needed (e.g. the one from Chapter 3). This 

matrix is factorized using the Cholesky decomposition Σ = <<$, where < is a lower triangular 

matrix (Seydel, 2012). Then the zero-mean correlated random variables Y can be calculated as 

Y = LZ, where Z are independent random variables drawn from a standard normal distribution. 

The random variables Y are then normally distributed with zero mean and covariance matrix Σ. In 
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step d from Figure 4-2, ! values are replaced with correlated random numbers sampled in this 

fashion. The sample ! is scaled by a standard deviation equal to 0.65 (ln units). The value of 0.65 

is consistent with the standard deviation of the FAS that results from the Boore03 procedure 

(Figure 4-2d), which is not sensitive to the time-domain variance of input white noise (Figure 4-

2b). The scaled ! are converted to normalized FAS by taking their natural exponent. The correlated 

! are standard-normally distributed in natural logarithm space, so the normalized FAS are log-

normally distributed. For a log-normally distributed variable Â, the first moment (mean) is given 

by Equation 4-5 (Kenney and Keeping, 1951): 

?[Â] = C'()
n
d*(	
q
	 (4 − 5) 

where +# and X# are the mean and standard deviation of the natural logarithm Â. In this application, 

+# = 0. The normalized FAS need to have unit mean so that implementing the correlation does 

not change the mean amplitude of the simulations (over a suite of realizations) with respect to the 

unmodified simulation method. Therefore, to get normalized FAS with mean equal to one, these 

must be scaled by the adjustment factor given in Equation 4-6. 

AN =
1

C
n
d*(
q
	 (4 − 6) 

With the imposed value of X# = 0.65, the adjustment factor AN =	0.8096. Finally, the normalized 

and adjusted FAS are scaled by the Fourier amplitude spectrum of the considered scenario (Figure 

4-2e), and the Boore03 recipe is continued to generate time series with realistic inter-frequency "# 
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of FAS. This procedure for creating simulated time series with realistic inter-period correlation is 

similar to the method described in Stafford (2017). 

Using these modifications, two simulation procedures arise: the original Boore03 method and the 

Boore03 method modified to include the inter-period correlation of epsilon. An individual 

realization of each procedure results in a pair of compatible acceleration time series. Both have 

similar phasing, duration, frequency content, and amplitudes. Individual realizations of correlated 

! may be positive or negative for frequency bands, but as the sample size is increased, the sampled 

! have the intended standard-normal parameter values. Therefore, with a sufficient sample size, 

the median FAS or PSA of a simulated scenario should be the same for both procedures. 

Example Application 

In the following example, structural fragilities are developed using an IDA with two sets of ground 

motions created using the two simulation procedures described in the previous section. The first 

set of ground motions has near zero inter-period correlation and the second set has realistic inter-

period correlation. Suites of 500 uncorrelated and correlated ground motions are developed using 

the same point source Fourier amplitude spectrum as the basis for the ground motion amplitudes.  

Both suites of simulations have similar ground motion distributions in FAS space (approximately 

0.65 ln units), as shown in  Figure 4-3 and Figure 4-4, respectively. The PSA is calculated directly 

from the acceleration time histories, which are obtained by performing the inverse Fourier 

transform. On the right side of Figure 4-3 and Figure 4-4, the random vibration theory (RVT) 

spectrum derived from seismological parameters consistent with the point source spectrum is 
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plotted (Boore and Thompson, 2012). The median PSA of the suite of 500 ground motions closely 

matches the RVT spectrum in both cases.  

 

Figure 4-3. A suite of 500 uncorrelated ground motion simulations for a M7.0 scenario at 30 km. Left: FAS 
realizations in blue, and the point source scenario spectrum in black.  Right: PSA spectra 
realizations in red, and the RVT spectrum in black. One realization is identified with bold line 
type. 

  

Figure 4-4. Like Fig. 3, but using the correlated ground motion simulations procedure. 

Although they have the same median, Figure 4-3 and Figure 4-4 illustrate the substantial 

differences in the distribution of PSA between the uncorrelated and correlated ground motion sets. 
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This happens because PSA spectra are influenced by a range of frequencies. As described 

previously, considering broad (highly correlated) spectra, the ground motions with extreme FAS 

! at given period generally stay extreme over the range of periods influenced by the response 

spectrum calculation (i.e. troughs remain in troughs, and peaks remain in peaks). The aggregate 

effect is the variability in PSA is higher for ground motions with realistic "# than for ground 

motions with low "#. The response spectrum is a simplified version of a real structure, and 

therefore its behavior mimics the expected response of a complete structural analysis.  

As a verification check, the "# of FAS is back-calculated from the suite of 500 simulated time 

histories, using the point source spectrum as the reference model for calculating residuals. These 

"# are summarized for the two suites of ground motions in Figure 4-5. These figures are symmetric 

about the 1:1 line because the correlation coefficient between two frequencies is the same 

regardless of which frequency is the conditioning frequency. As shown in Figure 4-5a, the Boore03 

procedure (uncorrelated) simulations exhibit near-zero correlation between frequencies. The 

correlated set of ground motions (Figure 4-5b) have "# of FAS consistent with the model imposed 

on the Fourier amplitudes, as expected.  
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Figure 4-5. "# of FAS contours over 01.1-24 Hz from (a) the suite of 500 uncorrelated ground motion 
simulations and (b) the suite of 500 correlated ground motion simulations. 

Example Application: Structural Models 

The open source finite-element platform, OpenSees (McKenna et al., 2010), is used to model the 

structures and to perform the dynamic nonlinear structural analyses. The fragility results presented 

in this chapter are for the 6-story steel special moment-resisting frame (SMRF) building model 

described in Kalkan and Kunnath (2006). Since the impact of the correlation is related to structural 

softening, structures with varying fundamental periods are analyzed to confirm that the 

observations are not specific to just one type of structure or fundamental period. In addition to the 

6-story steel building, a 12-story reinforced concrete building, (Heo, 2009) and a typical California 

Department of Transportation highway overcrossing (Kunnath et al., 2008) are tested. These 

alternate structures give similar results to the Kalkan and Kunnath (2006) model.   

The Kalkan and Kunnath (2006) building model is based on an existing building located in 

Burbank, California. The existing building was designed as described by Kalkan and Kunnath 
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(2006), “in accordance with UBC (ICBO 1973) requirements. The rectangular plan of the building 

measures 36.6 m by 36.6 m with an 8.2 cm thick lightweight concrete slab over 7.5 cm metal 

decking. The primary lateral load-resisting system is a moment frame around the perimeter of the 

building. Interior frames are designed to carry only gravity loads. All columns are supported by 

base plates anchored on foundation beams, which in turn are supported on a pair of 9.75 m, 0.75 

m diameter concrete piles.” The building was instrumented by the California Strong Motion 

Instrumentation Program (CSMIP) and recorded the response of the 1987 Whittier Narrows, 1991 

Sierra Madre, and 1994 Northridge earthquakes.  

The OpenSees computer models of this building were previously developed by Kunnath et al., 

(2004) and Kalkan and Kunnath (2006), including calibration of the models to match the observed 

response with the simulated response. The two-dimensional frame model used here is summarized 

by Kalkan and Kunnath (2006): “A force-based nonlinear beam-column element that utilizes a 

layered “fiber” section is utilized to model all components of the frame model. A fiber section 

model at each integration point, which in turn is associated with uniaxial material models and 

enforces Bernoulli beam assumptions for axial force and bending, represents the force-based 

element. Centerline dimensions were used in the element modeling. One half of the total building 

mass was applied to the frame distributed proportionally to the floor nodes. Modeling of the 

members and connections was based on the assumption of stable hysteresis derived from a bilinear 

stress-strain model. The columns were assumed to be fixed at the base level.” For additional model 

properties, the reader is referred to Kalkan and Kunnath (2006). 
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Example Application: Results 

Following the IDA approach, these sets of ground motions are scaled and numerical structural 

simulations are carried out using OpenSees. The IDA results for the 6-story steel SMRF building 

model are presented in Figure 4-6, where blue symbols and lines represent data from the 

uncorrelated simulations and the red symbols and lines represent the correlated simulations. For 

each PSA level (at the fundamental structural period; T=1.38 s), the fraction of the ground motions 

exceeding 4% MIDR are counted. The process is repeated over multiple IM levels to obtain the 

probability of exceeding 4% MIDR at the discrete IM amplitudes. The lognormal CDF parameters 

" and % are optimized to fit these probabilities in log-space. The least-squares fit is performed in 

logarithmic space in order to focus the fit on the low-end tail of the CDF, which controls the risk.  

 

Figure 4-6. Left: MIDR results of the structural analysis for suites of 500 ground motions at. Right: 
MIDR>4% probabilities (symbols) and the fitted CDF fragility functions (lines). 

As expected, the median structural response is similar between the correlated and uncorrelated 

ground motions sets, but the standard deviations of the structural responses are significantly 

different. For the presented results, the lognormal CDF dispersion parameter % is 0.31 for the 
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uncorrelated ground motions and 0.52 for the correlated ground motions (comparable to the 

building code value 0.6; ASCE, 2016). Larger % values mean flatter fragility curves with higher 

probabilities of failure at the lower IM levels.  

The structural fragilities are combined with the seismic hazard to calculate the EDP hazard, using 

Equation 4-3. The results are shown in Figure 4-7, where the left panel compares the structural 

fragilities and marginal risk on a logarithmic vertical axis. Plotting them this way illustrates the 

consequential differences between them at moderate IM levels, where the hazard is higher, and the 

risk is sensitive to the fragility. To calculate the risk from the EDP hazard, a step function of the 

DMs (usually collapse) as a function of EDP fragility is assumed. The right panels of Figure 4-7 

compare the marginal and cumulative marginal risk on a linear scale for the two ground motion 

sets. For this case, the highest marginal risk comes from PSA(T=1.38 s) levels less than 1g. 

Structural risk is calculated for four damage states using MIDR exceedances of 0.5%, 1%, 2%, 

and 4% (Table 4-1). For the MIDR>4% case, the structural risk calculated using the ground 

motions with realistic inter-period correlations is a factor of 1.43 higher than the risk calculated 

using uncorrelated ground motions, which corresponds to approximately the difference between a 

4,000- and 2,800-year return period. 
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Figure 4-7. Left: Combining the seismic hazard occurrence and MIDR>4% fragilities to get the EDP 
hazard. Right: the marginal risk and cumulative marginal risk on linear scales.  

Table 4-1. Structural risk for damage states with MIDR exceedances of 0.5%, 1%, 2%, and 4%. 

GM Suite MIDR ≥ 0.5% MIDR	≥	1% MIDR ≥ ,% MIDR ≥ 4% 

Correlated 1.44E-02 5.12E-03 1.42E-03 3.56E-04 

Uncorrelated 1.25E-02 4.26E-03 1.11E-03 2.49E-04 

Ratio 1.15 1.20 1.28 1.43 
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Evaluating the Correlation of Existing Ground Motion Simulations 

In the previous section, the inter-frequency correlation of simulated ground motions is 

demonstrated to be an important feature for capturing the variability of structural response, and 

therefore impacts the risk. In this section, the inter-frequency correlations of multiple existing 

ground-motion simulation methods are evaluated and compared with empirical models. The 

procedure to calculate the correlations is outlined and applied to suites of ground motion 

simulations calculated using several established simulation methods. The simulations used are 

from the Southern California Earthquake Center (SCEC) Broadband Platform (BBP, Maechling et 

al., 2015) and from the Lawrence Livermore National Laboratory (LLNL).  

Simulation Methods Evaluated 

The SCEC BBP is a collaborative software development project, with the objective to integrate 

complex scientific codes for generating broadband ground motions for earthquakes. Contributions 

come from many scientific groups including researchers, practitioners, and software development. 

On the BBP, the modular components include rupture generation, low- and high-frequency 

seismogram synthesis, non-linear site effects, and visualization (Maechling et al., 2015). 

Collections of these modules by different groups form alternate simulation methods. All of the 

BBP simulations evaluated here are based on regionalized 1-D (plane layered) earth models with 

engineering bedrock surface conditions, and do not model near surface site effects. The currently 

implemented methods include EXSIM (Atkinson and Assatourians, 2015), GP (Graves and 

Pitarka, 2015), SDSU (Olsen and Takedatsu, 2015), and UCSB (Crempien and Archuleta, 2015).  
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The process described in Dreger et al., (2015) established that specific methods (over defined 

period and magnitude ranges) on the BBP produce median results suitable for use in engineering 

applications. This validation exercise, driven by the needs of two major ground motion hazard 

projects, evaluated the performance of the different simulation methods in matching median PSA 

(RotD50 component), using both recorded earthquakes and GMMs for validation. For validating 

the simulations against data, nine events in active crustal regions were considered: 2008 Chino 

Hills, 2007 Alumn Rock, 1987 Whittier Narrows, 1986 North Palm Springs, 1994 Northridge, 

1989 Loma Prieta, 1992 Landers, 2000 Tottori, and 2004 Niigata (Goulet et al., 2015). These nine 

events are the simulations utilized herein, calculated with SCEC BBP version 16.5. The SONG 

(Song, 2016) method is also evaluated. Song (2016) is implemented on the SCEC BBP, but has 

not undergone the Dreger et al., (2015) validation exercise. 

A set of simulations calculated by LLNL are also evaluated, which are described in Rodgers et al. 

(2018). LLNL simulated ground motions for an M7.0 scenario earthquake on the Hayward Fault 

using 3-D earth structure and surface topography, with the open source finite-difference wave 

propagation code SW4. These simulations span frequencies from 0 to 4 Hz and the computational 

domain covers a 120 by 80 km area surrounding the fault, with a dense grid of simulation sites 

(2,301 in total) at the ground surface throughout the domain. The deterministic source description 

was created using the GP rupture generator. For more details on the simulation method and 

assumptions, the reader is referred to Rodgers et al., (2018). 
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Previous Work 

Others have studied the correlation of PSA of simulated ground motions (Burks and Baker, 2014), 

and the structural response of buildings to simulated and recorded ground motions, considering 

differences in ! (Tothong and Cornell, 2006). Tothong and Cornell concluded that the PSA for 

positive ! records (simulated using the point source stochastic method) drop off rapidly as the 

period ratio increases or decreases as compared to the as-recorded motions, resulting in an 

underestimation of the inelastic response of structures. This conclusion is consistent with the 

findings herein. More recently, Burks and Baker (2014) evaluated the inter-frequency correlations 

of response spectra using a subset of the Dreger et al. (2015) SCEC simulations, calculated using 

BBP version 11.2. Burks and Baker (2014) used simulations of the 1989 Loma Prieta earthquake 

(40 stations on rock site conditions), and obtained simulations performed by three groups: EXSIM, 

CSM (Anderson, 2015), and GP. The conclusions from Burks and Baker (2014) can be 

summarized as follows: the GP correlations were generally too low at short periods (the less 

theoretically rigorous, or stochastic portion) but had some correlation at long periods (the 

deterministic portion). The EXSIM method correlations were too low at all periods, and the CSM 

correlations were high at all periods relative to the empirical models and data. The Goulet et al., 

(2015) SCEC validation exercise did not evaluate the CSM method (Dreger and Jordan, 2014), so 

it is not included in this analysis. In future work, correlation of this method should be evaluated 

since the conclusions from Burks and Baker (2014) indicate this method could provide some 

insight on the features controlling the correlation. Following a description of the procedure for 

calculating the correlation, the Burks and Baker (2014) conclusions are compared with the results 

from this study. 
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Procedure 

To calculate "# of the simulations, the first step is to calculate the FAS from the simulated 

acceleration time series. The Effective Amplitude Spectrum (EAS), defined in the PEER NGA-

east project (Goulet et al., 2018), is calculated for each orthogonal pair of FAS using Equation 4-

7,  

?@A(0) = Ä
1
2
[N@AÇÉn(0)d + N@AÇÉd(0)d] (4 − 7) 

where N@AÇÉn and N@AÇÉn are the FAS of the two orthogonal horizontal components of a three 

component time series. The EAS is independent of the orientation of the instrument, and in this 

way is compatible with the PEER RVT approach for developing orientation-independent PSA 

predictions (Goulet et al., 2018). The EAS are smoothed using the log10-scale Konno and Ohmachi 

(1998) smoothing window, which has weights and window parameter defined by Equations 4-8 

and 4-9. 

W(0) = Ö
sin(â log(0 0ç⁄ ))

â log(0 0ç⁄ )
è
ê

(4 − 8) 

â = 2ë âí
ì (4 − 9) 

The smoothing parameters (W,0ç, â, âí) are described in Kottke et al., (2018). The Konno and 

Ohmachi (1998) smoothing window was selected by PEER NGA-East because it led to minimal 

bias on the amplitudes of the smoothed EAS when compared to the unsmoothed EAS. The 
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bandwidth of the smoothing window, â = 188.5, was selected such that the RVT calibration 

properties before and after smoothing were minimally effected (Kottke et al., 2018). This study 

uses smoothed EAS with the same smoothing parameters as described in Kottke et al. (2018), 

which has a direct impact on "#. Using the smoothed EAS maintains consistency with the PEER 

database and with other PEER projects; including the NGA-East empirical FAS models (Goulet 

et al., 2018) and the Bayless and Abrahamson (2018) EAS model (Chapter 2). 

The simulation residuals are computed relative to the EAS ground motion model developed in 

Chapter 2. The simulation residuals are partitioned as given by Equation 4-10. 

ln(?@A	>C5`¢RQ\)∆e (0) = UV∆(0) + UA2Ae(0) + UWA∆e(0) + _(0) (4 − 10) 

where _(0) is the mean residual between the suite of simulations and the empirical EAS GMM. 

The overall bias exists because the median EAS from the simulations is different from the 

empirical model for a given scenario. The overall bias between the simulations and the empirical 

model is removed by accounting for _(0). In order to avoid over-fitting the simulations, which 

would artificially decrease the computed correlations, the _(0) is partitioned into two terms: 

_ovh(0), the smooth linear fit in log-frequency space to _(0), and ∆_(0), the remaining bias, 

termed the ‘method-bias’ (Equations 4-11 and 4-12). 

ln(?@A	>C5`¢RQ\)∆e (0) = UV∆(0) + UA2Ae(0) + UWA∆e(0) + _ovh(0) + ∆_(0) (4 − 11) 

_(0) = _ovh(0) + ∆_(0) (4 − 12)	 
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This procedure achieves the goal of fitting the simulation data in a way that is consistent with the 

procedure for developing an empirical GMM, and yields residuals from the simulations which are 

consistent with the empirical residuals (i.e. are approximately normally distributed with zero 

mean). The bias terms for the six simulation methods evaluated are summarized in Figure 4-8. The 

cause of the method-bias is not clear; it could result from the theoretical 1-D Green’s functions, or 

it may be introduced by the source representation, for example. The correlation of this bias is 

included in the total correlation by modifying Equation 4-2 into Equation 4-13. 

"#,hihjk(0n, 0d) =
[
"f(0n, 0d)Y(0n)Y(0d) + "cdc(0n, 0d)Zcdc(0n)Zcdc(0d) +
"gc(0n, 0d)Zee(0n)Zee(0d) + "∆É(0n, 0d)Ê∆ÉÊ∆É

]

Xhihjk(0n)Xhihjk(0d)
(4 − 13)

 

where "∆É  and Ê∆É  are the auto-correlation and standard deviation of the method-bias term, 

respectively, and Xhihjk is the total standard deviation including the contribution from ∆_ 

(Equation 4-14). 

Xhihjk
d = Yd + Zcdc

d + Zee
d + Ê∆É

d (4 − 14) 

Moving forward, the appropriate components of the correlation model must be selected carefully 

when making comparisons between the empirical "# and the "# of simulations, so that the 

conclusions drawn are meaningful. To facilitate this, comparisons between each of the available 

correlation components are provided. For the BBP simulations, which are based on regionalized 

1-D earth models without site effects, the between-site component of the correlation is not 

captured. This is because of an inherent limitation of 1-D simulations, namely, that there is no 
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variability in the site response because all sites have the same site adjustment. This means the 

UA2A term cannot be distinguished from the constant (Equation 4-15). 

ln(?@A	>C5`¢RQ\)∆e (0) = UV∆(0) + UWA∆e(0) + [UA2Ae(0) + _(0)] (4 − 15) 

 

	 	

	 	

	 	
Figure 4-8. The overall bias between the simulations and the empirical model, _(0), the smooth linear fit 

in log-frequency space, _ovh(0), and the remaining model term bias ∆_(0) for the six 
simulation methods evaluated. 
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Stafford (2017) and Bayless and Abrahamson (2018; modified from Chapter 3) both found that a 

significant contribution to the total correlations comes from the between-site terms. As a result, 

the most appropriate comparison for tuning the methods based on a 1-D assumption is the 

correlation of the between-event and within-site terms, because they can be separated and 

compared directly. If these methods were tuned to the total correlation, the resulting within-site 

and between-event components would be over-estimated since the between-site correlation 

component is relevant but cannot be determined for a 1-D simulation.  

The LLNL simulations, which use a 3-D earth structure including surface topography, have the 

potential to overcome this limitation of 1-D modeling; however, since the simulation data used for 

this study includes one realization of the source (e.g. one earthquake scenario and one simulated 

time history per site), the between-event correlations cannot be estimated or separated from the 

constant. Also, the UA2A and UWA terms cannot be separated (Equation 4-16).  

ln(?@A	>C5`¢RQ\)∆e (0) = [UA2Ae(0) + UWA∆e(0)] + [UV∆(0) + _(0)] (4 − 16) 

In this case, the method-bias term includes one realization of the between-event term. Because the 

residual components cannot be separated, the total correlation of these simulations is compared 

with the total correlation from the data. The conclusions drawn herein would be strengthened by 

having more earthquake simulation scenarios to evaluate the correlation components individually. 

For both the SCEC and LLNL simulations, the quantity of simulation stations is large enough to 

robustly estimate the correlation coefficients for a given scenario. For the SCEC simulations, 

multiple source realizations of the same earthquake are utilized as separate events with respect to 
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calculating residuals. Two approaches for calculating "# from the simulations are tested. First, the 

correlations are calculated for individual validation events. Second, the residuals from the nine 

events are combined into one database before calculating "#. No systematic differences in the 

correlations are observed between these approaches, indicating that the correlation behavior of the 

simulations is not event specific. Results shown herein are for the combined database approach. 

Bayless and Abrahamson (2018, modified from Chapter 3) also showed that the inter-frequency 

EAS correlations calculated using recorded data from only the nine SCEC validation events did 

not vary systematically from the correlations calculated from the full database. This also indicates 

that the correlations are not event or magnitude specific and that using simulations from a small 

group of earthquake scenarios should still yield correlations which are broadly consistent with the 

"#	empirical model.  

The total correlation model for ?@A developed in Chapter 3 is summarized in Figure 4-9a. The 

Baker and Jayaram (2008) model for inter-period correlation of ! for response spectra ("«cÌ) from 

shallow crustal earthquakes is shown in Figure 4-9b. An important difference between the EAS 

and PSA correlations is the behavior at high frequencies. The PSA contours broaden substantially 

at high frequencies, this is because of the wide ground motion frequency range of influence on the 

short period PSA, as described in Chapter 2. The EAS contours do not exhibit this behavior since 

the Fourier transform operation at each frequency bin is independent of neighboring bins. Stafford 

(2017) also developed an inter-frequency correlation model for FAS. This model is based on 

different data and assumptions than the model developed in Chapter 3, including using the FAS 

without smoothing. These differences are discussed in detail in Chapter 3. The correlation model 

developed in Chapter 3 is consistent with the empirical EAS datasets developed at PEER and has 
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"# components for the three residual components described previously (UV, UA2A and UWA), along 

with a total correlation model. 

	 	

Figure 4-9. (a) Contours of the total EAS correlation model developed in Chapter 3. (b) Baker and Jayaram 
(2008) PSA correlation model contours. 

Inter-Period Correlations 

This section evaluates the current status of the correlation contained in the simulation methods 

described above. Evaluations are performed primarily in the frequency domain, so that 

shortcomings can be resolved by future improvement to the simulation methods. The specific parts 

of the simulation methods driving the correlation are yet to be determined, and although the results 

shown here provide some insights, more work is still needed to identify the causal features. 

Therefore, the focus here is on presenting the results without concluding which features of the 

simulations control the correlation.  
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Figure 4-10 through Figure 4-14 summarize the inter-period correlation of ! for EAS and response 

spectra ("ÏÌc and "«cÌ) of the five BBP simulation methods evaluated. These are calculated using 

the nine validation event simulations described above, with residuals calculated using the GMM 

for EAS developed in Chapter 2, and using the NGA-West2 GMMs for PSA. These figures provide 

a visual means of subjectively comparing the correlations calculated from the simulation methods 

with the empirical correlations. Each figure shows cross-sections of the "# contours at conditioning 

frequencies 0.2, 0.5, 2, 5, and 15 Hz. Panels (a) through (c) of each figure compare the cross-

sections of the between-event, within-site, and total "ÏÌc with empirical correlations, respectively. 

Panel (d) compares the "«cÌ  with the Baker and Jayaram model. The comparisons focus on 

correlations greater than 0.4, because it is expected that the correlation values greater than about 

0.5 impact the structural response. As mentioned previously, the BBP simulations are based on 

regionalized 1-D earth models without site effects, so the between-site component of the 

correlation is not captured. Figure 4-15 presents the same summary of the correlations calculated 

from the LLNL simulations, where the empirical "# cross-sections represent the total correlation 

model.  

EXSIM method results are shown in Figure 4-10. As expected, since EXSIM is based on the PS 

stochastic method, the within-site and total inter-period correlations for this method are lower than 

the empirical correlations and drop rapidly moving away from the conditioning frequency. The 

between-event correlation conditioned at 15 Hz (black line in panel a) is broad relative to other 

frequencies; similar relatively high between-event correlation at the higher frequencies are 
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observed for several of the simulation methods. The within-event "«cÌ observed are generally 

consistent with the conclusions of Burks and Baker (2014).  

	 	

	 	
Figure 4-10. Summary of the correlations calculated from the Atkinson and Assatourians (2015) SCEC 

BBP validation simulations, compared with empirical correlations. (a) Between-event "ÏÌc 
cross-sections versus frequency at conditioning frequencies 0.2, 0.5, 2, 5, and 15 Hz (solid 
lines), compared with the empirical correlations from Bayless and Abrahamson (2018) (dashed 
lines). (b) Comparison of the within-site "ÏÌc. (c) Comparison of the total "ÏÌc. (d) Within-
event "«cÌ cross-sections versus period (solid lines), compared with the Baker and Jayaram 
(2008) model (dashed lines).  

Figure 4-11 displays the GP method results. At frequencies above 1 Hz, this method is similar to 

EXSIM, and the within-site correlations are therefore similarly low. At frequencies below 1 Hz, 

the correlations generally show significant promise, but the total "ÏÌc values still drop of too 

quickly moving away from the conditioning frequency for most frequencies. At frequencies less 

than about 0.25 Hz, the total correlations are similar to the empirical correlations. By definition, 

the PSA correlations reflect the EAS correlations. This is evident for GP as the short period (<1 
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sec) PSA correlations are low, and the long period (>1 sec) ones are closer to the empirical model. 

The within-event "«cÌ for the GP method are also generally consistent with those calculated by 

Burks and Baker (2014). 

	 	

	 	
Figure 4-11. Summary of the correlations calculated from the Graves and Pitarka (2015) SCEC BBP 

validation simulations. See Figure 4-10 caption for a complete description of each panel. 

SDSU method results are shown in Figure 4-12. At frequencies below 1 Hz, this method is identical 

to GP, and therefore the correlations are the same as GP. At higher frequencies, this method shows 

an abrupt drop of the within-site correlation away from the conditioning frequency, followed by 

moderately high correlation (between 0.7 and 0.95) over the entire frequency range greater than 1 

Hz. The cause of this feature is currently not known and should be studied further. 
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Figure 4-12. Summary of the correlations calculated from the Olsen and Takedatsu (2015) SCEC BBP 

validation simulations. See Figure 4-10 caption for a complete description of each panel. 

Figure 4-13 displays the SONG method results. The SONG method uses the GP wave propagation 

and simulation code; the only differences are in the earthquake source. Including this method in 

the analysis is a convenient way to isolate the effects of the correlation of earthquake source 

parameters on the GP simulation method inter-frequency correlations. The SONG earthquake 

source method is characterized by kinematic source parameters (including slip, rupture velocity, 

peak slip velocity) with 1-point statistics (median and standard deviation) and 2-point statistics 

(autocorrelation in space and correlation between parameters) constrained by dynamic rupture 

modeling. Because the SONG low frequency correlations are significantly broader than the GP 

correlations, this indicates that correlation of these parameters in the source may have an important 

effect on modeling the low frequency inter-period correlations. Like GP, the SONG total 

correlations are closest to the empirical model at low frequencies, and actually exceed the 
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empirical correlations at frequencies very near the conditioning frequency. The total correlations 

are low at the high frequencies. This model is the only one evaluated which potentially over-

estimates the total "ÏÌc over a wide range of frequencies (approximately 0.1 - 0.7 Hz). 

	 	

	 	
Figure 4-13. Summary of the correlations calculated from the Song (2015) SCEC BBP validation 

simulations. See Figure 4-10 caption for a complete description of each panel. 

Figure 4-14 displays the UCSB method results. This model, like several others, has lower within-

site correlation than the empirical models at frequencies above 1 Hz. Likewise, the low frequency 

total correlations are closer, but still slightly low, compared to the data, except for very low 

frequencies where they are similar to the empirical correlations. The between-event "ÏÌc at high 

frequencies is much broader than the empirical models, and this effect propagates through to the 

total "ÏÌc. An undulating pattern in the "ÏÌc is also observed, especially for low correlation values 

at frequencies far from the conditioning frequency. This pattern was not observed with the other 
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methods, but the higher correlation values will have the most effect on structural response, 

therefore the undulating feature at low correlation values is not a major concern with respect to 

validation. 

	 	

	 	
Figure 4-14. Summary of the correlations calculated from the Crempien and Archuleta (2015) SCEC BBP 

validation simulations. See Figure 4-10 caption for a complete description of each panel. 

Figure 4-15 displays the LLNL method results over the frequency range 0.1 to 4 Hz. As described 

previously, these simulations are for one realization of the source, so the between-event and 

between-site correlations cannot be separated. Therefore, the correlations calculated include one 

realization of the between-event correlation in addition to the remaining correlation, and so they 

are compared with the total correlation model. These results show a similar trend to the other 

methods analyzed; the most broad correlations at lowest frequencies, with too steeply dropping 

correlations at higher frequencies. At the lowest frequencies, the total correlations are similar to 
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those from the data, but further refinements should be made to frequencies greater than about 0.25 

Hz. These conclusions regarding the LLNL simulations would be strengthened by having more 

earthquake simulation scenarios to evaluate the correlation components individually.  

	 	
Figure 4-15. Summary of the correlations calculated from the Rodgers et al. (2018) Hayward fault scenario 

simulations at conditioning frequencies 0.2, 0.5, and 2 Hz. (a) Comparison of the total "ÏÌc. 
(b) Comparison with the Baker and Jayaram (2008) within-event "«cÌ model. 

Conclusions 

The inter-period correlation of epsilon is an important component of ground motions for capturing 

the variability of structural response that is needed in seismic fragility and seismic risk studies. 

Without the adequate inter-period correlation of ground motions, variability in the structural 

response may be under-estimated. This leads to structural fragilities which are too steep (under-

estimated dispersion parameter %) and propagates through to non-conservative estimates of 

seismic risk. The conclusions herein apply directly to structural fragility or risk assessments which 

are derived from ground motion simulations, commonly referred to as ‘ruptures to rafters’ 

simulations. These results are similar for the three structures analyzed: a 6-story steel special 

moment-resisting frame (SMRF), a 12-story reinforced concrete building, and a typical California 

Department of Transportation highway overcrossing. 
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None of the six finite-fault simulation methods tested adequately capture the inter-period 

correlations over the entire frequency range evaluated, although several of the methods show 

promise, especially at low frequencies. Using the correlation of the EAS provides the developers 

of the simulation methods better feedback in terms of how they can modify their methods that is 

not clear when using PSA comparisons. For the stochastic part of the simulation, adding the 

empirical correlation is relatively straight-forward, such as was done for the stochastic simulations 

used here. For the deterministic part of the simulation, capturing the correlation is more difficult 

as it requires modifying the rupture generator or the wave propagation parts of the simulation 

which have already been validated for the median ground motion. Based on the relative differences 

in the correlations of the SONG source method, it appears that changes to the rupture generator 

may be the most promising approach to modifying the long period inter-period correlations. 
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Chapter 5: 

Calibrating the inter-period correlation of EXSIM finite-fault 

ground motion simulations 
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Abstract 

In the previous chapter, the inter-frequency correlation of epsilon of Fourier amplitude spectra ("#) 

is shown to be an important ground-motion characteristic for capturing the variability of structural 

response that is needed in seismic fragility and seismic risk studies. Therefore, the inter-frequency 

correlation from numerical simulation methods needs to be tested and validated. The previous 

chapter also evaluated the "# of existing finite-fault ground-motion simulation methods. None of 

the six finite-fault simulation methods tested adequately capture the "# over the entire frequency 

range evaluated, although several of the methods show promise, especially at low frequencies. In 

this chapter, approaches are developed to incorporate the observed "# into the finite-fault 

simulation algorithm EXSIM (Atkinson and Assatourians, 2015). Incorporation of the correlation 

into the Fourier amplitude spectra of each EXSIM sub-source is tested, but the resulting 

correlations (of the FAS of the complete finite-fault simulation considering all sub-sources) are 

lower than desired, meaning there is destructive interference of the correlation between sub-

sources. As an alternative, a method to implement the correlation as a post-processing modification 

is introduced, which achieves the short-term goal of being be able to prescribe the correlation of 

the full waveform seen in the data for other applications, e.g. structural risk. The implementation 

of the correlation into the sub-sources should be studied further in future work. 
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Introduction 

The inter-period correlation of epsilon ("#) is an important component of ground motions for 

capturing the variability of structural response that is needed in seismic fragility and seismic risk 

studies. Without the appropriate inter-period correlation of ground motions, variability in the 

structural response may be under-estimated. This leads to structural fragilities which are too steep 

(under-estimated dispersion parameter %) and propagates through to non-conservative estimates 

of seismic risk. This is the motivation for calibrating the inter-frequency correlation of the finite 

fault simulations. In Chapter 4, current state of multiple existing ground motion simulation 

methods was assessed by evaluating the inter-frequency correlations from forward simulations and 

comparing with the correlation from empirical models. None of the six finite-fault simulation 

methods tested adequately capture the inter-period correlations over the entire frequency range 

evaluated, although several of the methods show promise, especially at low frequencies. Therefore, 

the inter-frequency correlation from numerical simulation methods needs to be calibrated. This 

chapter tests methods for calibrating the simulation method EXSIM (Atkinson and Assatourians, 

2014). 

Background on SMSIM and EXSIM 

The point-source stochastic method for simulating ground motions, based on the pioneering work 

of Brune (1970), Hanks and McGuire (1981) and Boore (1983), among others, has been developed 

and refined over several decades. David Boore formalized the method, extended it to the simulation 

of acceleration time series, and developed a computer code named SMSIM for the implementation 

(Boore, 1983; Boore, 2003; Boore, 2005). An SMSIM simulated time series is produced using a 
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seismological model of the Fourier amplitude spectrum, and assuming the spectrum is distributed 

with random phase angles over a time duration related to the earthquake magnitude and the 

distance between the source and site. The Boore (2003) procedure starts by generating normally 

distributed noise (Figure 5-1a) and applying a time-domain taper with duration consistent with the 

scenario being considered (Figure 5-1b). The tapered noise is transformed into the frequency 

domain (Figure 5-1c), and the FAS of the noise is normalized by the square root of the mean 

power, such that the FAS has mean power of one (Figure 5-1d, showing the natural logarithm of 

these values). The normalized FAS is then shaped to the point-source Fourier amplitude spectrum 

of the considered scenario (Figure 5-1e), and inverse transformed to the time domain using the 

phase angles from the tapered time domain noise (Figure 5-1f). 

 

Figure 5-1. Illustration of the Boore (2003) procedure for simulating acceleration time series using the 
point-source stochastic method. Each sub-panel is described in the text. 
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EXSIM is the finite-fault extension of SMSIM. Like SMSIM, EXSIM is also an open-source 

simulation algorithm for generating time series of ground motion for earthquakes. EXSIM divides 

a finite-fault rupture into sub-sources with each sub-source modeled as a point source using the 

point-source stochastic method. The acceleration time series resulting from each sub-source is 

summed in the time domain after applying appropriate time delays for propagation of the rupture 

front (Atkinson and Assatourians, 2014). The version of EXSIM used here is described in Atkinson 

and Assatourians (2014) and is implemented as a FORTRAN code in the Southern California 

Earthquake Center (SCEC) Broadband Platform (BBP, Maechling et al., 2015) v17.3.  

Implementing the Correlation 

SMSIM 

SMSIM uses filtered white noise in the time-domain, resulting in ! with no correlation between 

frequencies. To generate a simulated time series with realistic inter-period correlation of the 

epsilon, the SMSIM procedure can be modified as described below. 

First, a symmetric, positive-definite covariance matrix (Σ) for the inter-frequency "#,hihjk of FAS 

is needed (e.g. the one from Chapter 3). This matrix is factorized using the Cholesky 

decomposition Σ = <<$, where < is a lower triangular matrix (Seydel, 2012). Then the zero-mean 

correlated random variables Y can be calculated as Y = LZ, where Z are independent random 

variables drawn from a standard normal distribution. The random variables Y are normally 

distributed with zero mean and covariance matrix Σ. In step d from Figure 5-1, ! values are 

replaced with correlated random numbers sampled in this fashion. The sample ! is scaled by a 
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standard deviation equal to 0.65 (ln units). The value of 0.65 is consistent with the standard 

deviation of the FAS that results from the SMSIM procedure (Figure 5-1d), which is not sensitive 

to the time-domain variance of input white noise (Figure 5-1b). The scaled ! are converted to 

normalized FAS by exp(! ∗ X). The correlated ! are standard-normally distributed in natural 

logarithm space, so the normalized FAS are log-normally distributed. For a log-normally 

distributed variable Â, the first moment (mean) is given by Equation 5-1 (Kenney and Keeping, 

1951): 

?[Â] = C'()
n
d*(	
q
	 (5 − 1) 

where +# and X# are the mean and standard deviation of the natural logarithm Â. In this application, 

+# = 0. The normalized FAS need to have unit mean so that implementing the correlation does 

not change the mean amplitude of the simulations (over a suite of realizations) with respect to the 

unmodified simulation method. Therefore, to get normalized FAS with mean equal to one, these 

must be scaled by the adjustment factor given in Equation 5-2. 

AN =
1

C
n
d*(
q
	 (5 − 2) 

With the imposed value of X# = 0.65, the adjustment factor AN =	0.8096. Finally, the normalized 

and adjusted FAS are scaled by the Fourier amplitude spectrum of the considered scenario (Figure 

5-1e), and the SMSIM recipe is continued to generate time series with realistic "#: SMSIMcorr 

(Figure 5-2).  
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This SMSIMcorr procedure is similar to the method described in Stafford (2017). Individual 

realizations of correlated ! may be positive or negative for frequency bands, but as the sample size 

is increased, the sampled ! have the intended standard-normal parameter values. Therefore, with 

a sufficient sample size, and with the adjustment factor given by Equation 5-2, the median FAS or 

spectral acceleration (PSA) of a simulated scenario should be the same as from the unmodified 

SMSIM procedure. In Figure 5-3, example smoothed FAS spectra from the SMSIM and 

SMSIMcorr procedures are shown for one sample of !.  

In this implementation, the model for the inter-frequency "# of FAS developed in Chapter 3 is 

used to generate correlated !. The model usable frequency range is 0 =	0.1-24 Hz and requires 

extrapolation for frequencies outside this range. The extrapolation is performed by using the values 

for model coefficients A, B, _, and Í (Equation 3-8) at either 0 =	0.1 or 0 = 24 Hz, for 

extrapolating to lower and higher frequencies, respectively. The extrapolation is performed to 

generate correlated ! over the frequency range 0.01-100 Hz in the SMSIM and EXSIM (described 

below) implementation procedures. This extrapolation may introduce a bias in the correlations at 

very low and high frequencies, as discussed further below. 
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Figure 5-2. Left: An example realization of correlated !. Right: The point source Fourier amplitude 

spectrum of the example scenario (heavy red line) and the correlated ! shaped to the spectrum 
(blue).  

	 	
Figure 5-3. Left: An example smoothed FAS spectrum from the unmodified SMSIM procedure (low "#). 

Right: An example smoothed FAS spectrum from the SMSIMcorr procedure. In both panels the 
point source scenario spectrum is given by the dashed line. 

EXSIM: Sub-Sources 

As described previously, EXSIM is the finite-fault extension of SMSIM. Ideally, implementing 

the inter-frequency correlation should involve following the SMSIMcorr procedure for all the sub-

sources, and the resulting finite-fault time series should also have the appropriate "#. In Chapter 

3, it is shown that the total "# does not have a strong dependence on magnitude, so the small events 
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(the sub-sources) effectively have the same "# as the larger scenario. Thus, the summation of 

multiple sub-sources in the time domain should be equivalent to the summation of the sub-source 

Fourier amplitude spectra due to the linearity of the Fourier transform. This concept is tested in 

this section. 

Each of the sub-source implementations are tested using 300 realizations of the same earthquake 

scenario for a single site. The scenario is the Northridge earthquake using the source as defined in 

Goulet et al. (2014) and the site is Sylmar Converter Station East (SCSE), which is located 

approximately 5km from the rupture plane. The sub-source implementation is tested using three 

approaches: Method 0, Method 1 and Method 2; these are described below. 

Method 0 

Method 0 is the unmodified version of EXSIM. Using Method 0, the smoothed FAS of the 300 

simulated acceleration time series of the Northridge-SCSE scenario are calculated and shown in 

Figure 5-4a. The FAS are smoothed, and ! and "# are calculated using the mean of these spectra 

as a reference. Figure 5-4b shows the "# cross-sections at five conditioning frequencies calculated 

from these simulations, along with the "# model cross-sections (from Chapter 3) which are used 

to generate the correlated ! values (in Methods 1 and 2). As expected, there is effectively zero 

inter-period "# using unmodified EXSIM. 
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Figure 5-4. Results created using unmodified EXSIM (Method 0). (a) The smoothed FAS of the 300 

realizations of the Northridge-SCSE scenario, with the geometric mean of these spectra (heavy 
line). (b) The "# at five conditioning frequencies calculated from these simulations (solid) 
along with the "# model from Chapter 3. 
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Method 1 

For Method 1, the code is modified by following the SMSIMcorr procedure with a different sample 

of correlated ! within each sub-source of the finite rupture. This means that for a given rupture, 

the different sub-sources will have correlated Fourier spectra with local peaks and troughs over 

different frequency ranges due to the random sampling of correlated !.  

The smoothed FAS of the 300 simulated acceleration time series of the Northridge-SCSE scenario 

are calculated and shown in Figure 5-5a. The FAS are smoothed, and ! and "# are calculated using 

the mean of these spectra as a reference. Figure 5-5b shows the "# cross-sections at five 

conditioning frequencies calculated from these simulations, along with the "# model cross-sections 

(from Chapter 3) which are used to generate the correlated ! values.  

The "# cross-sections in Figure 5-5b are much weaker than the "# prescribed to each sub-source, 

meaning there is significant destructive interference of the correlation between sub-sources. This 

result led to the second method for sub-source implementation, Method 2. 
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Figure 5-5. Results created using EXSIM with the SMSIMcorr procedure applied to each sub-source, Method 
1 (using a different sample of correlated ! within each sub-source for a given realization.)   
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Method 2 

Method 2 is tested with the objective of avoiding the destructive interference of the correlation 

between sub-sources observed using Method 1. For Method 2, the SMSIMcorr procedure is 

followed with the same sample of correlated ! within each sub-source of the finite rupture. In this 

case, for a given rupture realization, the different sub-sources will have correlated Fourier spectra 

with peaks and troughs in the same frequency ranges. Between alternate rupture realizations, the 

correlated ! samples vary. The simulation is repeated for the same Northridge-SCSE scenario 300 

times and the smoothed FAS of the resulting acceleration time series are calculated and shown in 

Figure 5-6a. Figure 5-6b shows the "# cross-sections at five conditioning frequencies.  

The "# cross-sections from Method 2 (Figure 5-6b) are stronger than from Method 1 but are still 

weaker than the "# prescribed to each sub-source. This means there is still destructive interference 

of the correlation between sub-sources. Since each sub-source is prescribed the same correlated ! 

values for a given realization, this was not the expected result. 
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Figure 5-6. Results created using EXSIM with the SMSIMcorr procedure applied to each sub-source, Method 

2 (using the same sample of correlated ! within each sub-source for a given realization.)   
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In Chapter 3, it is shown that the total "# does not have a strong dependence on magnitude, so the 

small events (the sub-sources) effectively have the same "# as the larger scenario. Thus, the 

summation of multiple sub-sources in the time domain was expected to be equivalent to the 

summation of the sub-source Fourier amplitude spectra due to the linearity of the Fourier 

transform. Upon further inspection, this is not the case because the real and imaginary parts of the 

Fourier transform are individually linear, and so they possess the additive property of linearity as 

given by Equation 5-3 (Smith, 1997):  

`0	0n(K) + 0d(K) = 0~(K)
KℎCH	ℱn◊(5) + ℱd◊(5) = ℱ~◊(5) (5 − 3)
QH¢	ℱn˙(5) + ℱd˙(5) = ℱ~˙(5)

 

where 0(K) denotes a time-domain signal, ℱ(5) denotes its Fourier transform, and subscripts > 

and = denote the real and imaginary parts of the transform. By Equation 5-3, the summing of time-

domain signals from the sub-sources can contribute to the degradation of the inter-frequency 

correlation due to differences in the phasing. This effect can be understood by considering the most 

extreme case: two time-domain signals 0n and 0d, where 0d = −0n, so it follows that 0n + 0d = 0 

and the two signals are purely out of phase. In this case, the Fourier amplitude spectra (magnitude) 

of the two signals are identical, but the phase angles are shifted by ë. The Fourier amplitude spectra 

of the quantity 0n + 0d is zero and is not equal to the sum of the Fourier amplitude spectra of both 

signals. 

Figure 5-7 shows this effect for a less extreme case: two acceleration time histories 0n and 0d which 

represent the response from two EXSIM sub-sources for this example. In this case, 0d(K) = 0.75 ∗
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0n(K − 5) and 0~ = 0n + 0d. On the right side of Figure 5-7, the FAS are shown over the frequency 

range 1-2 Hz. This figure shows that the additive property of the linearity of the Fourier transform, 

which applies to the real and imaginary parts, does not necessarily hold for the Fourier amplitudes 

(magnitudes). This is the effect of differences in phase angles on the finite-fault Fourier amplitude 

spectrum, which is causing the reduction in correlation between frequencies shown in Figure 5-

6b. This effect should be studied further in the future with methods for generating partially 

correlated phase angles so that the correlation can be implemented at the sub-source level. 

 

Figure 5-7. Left: Example acceleration time histories 0n and 0d, which represent the response from two 
EXSIM sub-sources, plus their sum, 0~. Right: The FAS over the frequency range 1-2 Hz. 

EXSIM: Post-Processing 

Rather than incorporating "# into each EXSIM sub-source, another approach is to implement the 

"# as a post-processing step. For a given earthquake scenario and site, the post-processing method 

steps are: 



 175 

• Run the unmodified EXSIM algorithm H times. 

• Calculate the geometric mean FAS of the H simulated time series. 

• Using the mean spectrum as the target (in place of the point source spectrum), shape the 

sample of correlated ! to the target spectrum. 

• Perform the inverse Fourier transform using the phase angles from the tapered time domain 

noise from any of the `hœ simulation realizations. 

This method is tested using the same earthquake and site (Northridge-SCSE) and with H = 300. 

The resulting FAS and the "# are shown in Figure 5-8. In this case, the "# match the prescribed 

model well, and with increasing H, the match should also improve. 

The post-processing method allows for full calibration of the correlation of the simulations, which 

has use in practice in the short-term (e.g. structural risk applications, such as those in Chapter 4), 

but it is not a desirable approach. The "# observed in the data is an important property of ground 

motions, and there is some physical reason for the existence of the correlation. The theoretical 

cause is currently not well understood (although the relative contributions of GMM components 

to the total correlation have been identified in Chapter 3), but the correlation must be introduced 

in some combination of the earthquake source, the travel path, and the local site response. 

Therefore, the preferable approach is to incorporate the correlation into seismological models 

(EXSIM, as well as others) through these foundational elements so that the models most closely 

represent the earthquake process. When the post-processing method is applied, the physical 

process built into the finite-fault simulation is ignored.  
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Figure 5-8. (a) The smoothed FAS of 300 realizations of the Northridge-SCSE scenario created using 

EXSIM with the post-processing "# procedure, with the geometric mean of these spectra (heavy 
line). (b) the "# at five conditioning frequencies calculated from these simulations (solid) along 
with the "# model from Chapter 3 used to generate correlated the ! values (dashed). 
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SCEC Broadband Platform Implementation 

Due to the unresolved shortcomings of the sub-source method, the post-processing method is 

tested on the SCEC Broadband Platform v17.3. Simulations of seven of the Dreger et al. (2014) 

validation events are analyzed: Alum Rock, Chino Hills, Landers, Loma Prieta, North Palm 

Springs, Northridge, and Whittier Narrows. The simulations on the BBP use 50 realizations (each 

with a different random number generation seed) of each event and each earthquake simulates 

ground motions for approximately 45 sites.  

The response spectra goodness-of-fit (GOF) is a summary of the logarithmic residuals of the 

simulated response spectra relative to the recorded ground motions. The GOF is calculated at each 

spectral period. The GOF plot is the primary evaluation tool used in the Goulet et al., (2015) 

validations of the SCEC BBP simulations. Figure 5-9 shows a GOF plot for simulations of the 

Loma Prieta earthquake. This plot is created using the combination of all 50 source realizations 

and all recording stations, where the solid black line is the mean GOF for all stations (with the 

average of all source realizations representing the PSA at a station). The pink band is the 90% 

confidence interval for the mean, and the purple band is the standard deviation centered around 

the mean (Goulet et al., 2014). Figure 5-10 shows the same summary plot for the Northridge 

earthquake simulations. In both figures, the top panel shows the GOF summary for unmodified 

EXSIM, and the bottom panel shows the GOF summary for EXSIM with the post-processing ρ/ 

procedure. 
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Period	(s)	

Figure 5-9. The goodness-of-fit (GOF) for response spectra, simulations of the Loma Prieta earthquake. 
Top: Unmodified EXSIM, Bottom: EXSIM with the post-processing "# procedure. 

As shown in Figure 5-9 and Figure 5-10, the post-processing ρ/ procedure does not introduce a 

significant bias in the mean residual. Minor shifts in the mean residuals are due to the random 

sampling of correlated ! over the 50 source realizations. The difference in the mean residual seen 

for the two earthquakes in Figure 5-9 and Figure 5-10 is similar because the same samples of ! 

were used in the 50 realizations of both earthquakes (a result of the same set of random number 

generator seeds). If different ! sets were used between earthquakes, then the two simulations would 

have different mean bias effects. Additionally, with more realizations, the mean bias will approach 

the unmodified EXSIM, so that validations for the median PSA do not need to be repeated.  
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Figure 5-10. The goodness-of-fit (GOF) for response spectra, simulations of the Northridge earthquake. 
Top: Unmodified EXSIM, Bottom: EXSIM with the post-processing "# procedure. 

Using the simulations, residuals are also calculated from the NGA-West2 GMMs for PSA. These 

models are smooth, so they produce residuals appropriate for back-calculating ρ/ from the 

simulated time series. Using the seven validations events, with 50 source realizations of each event, 

and with approximately 45 stations per event, a database of 13,400 PSA residuals is developed. 

Figure 5-11b summarizes the within-event ρ/ of these PSA residuals; panel (a) shows the within-

event ρ/ for the unmodified version of EXSIM. This figure indicates that the post-processing 

implementation of ρ/, applied to the FAS, performs quite well. The ρ/ for PSA is significantly 
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improved relative to the unmodified EXSIM version. These correlations approximately match the 

Baker and Jayaram (2008) empirical model, except for the very long periods where the correlation 

is higher than the model. At long periods, the correlations may be biased due to the extrapolation 

of the FAS ρ/ model to frequencies as low as 0 =	0.01 Hz. This effect should be studied further. 

	

	
Figure 5-11. Comparison of within-event "# of PSA, (a) for unmodified EXSIM, and (b) for EXSIM with 

the post-processing "# procedure. Both plots show cross-sections of "# versus period at 
conditioning periods 0.05, 0.2, 0.5, 2, and 5 sec calculated from the simulations (solid lines), 
compared with the Baker and Jayaram (2008) model (dashed lines). 
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Conclusions and Recommendations for Future Work 

The correlation incorporated into the Fourier amplitude spectra of each EXSIM sub-source results 

in lower than desired "#, meaning there is destructive interference of the correlation between sub-

sources. EXSIM has been calibrated using no correlation between frequencies, and in order to 

incorporate the correlation on a sub-source level, these calibrations will need to change. 

The "# can be calibrated as a post-processing modification, which is not preferable, but achieves 

the short-term goal of being be able to prescribe the total correlation of the full waveform seen in 

the data for other applications, e.g. structural risk. This method has been implemented and tested 

on the SCEC Broadband Platform. In the long term, preferable approach is to incorporate the 

correlation into seismological models (EXSIM, as well as others) through the foundational 

elements (source, path, site) so that the models most closely represent the earthquake process. 
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Chapter 6: 

Summary and Recommendations 
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This dissertation makes progress towards improving the time series from ground-motion 

simulations in terms of adequately capturing the key features of empirical ground motions.  

Specifically, the dissertation addresses the inter-frequency correlation in the Fourier Spectra. The 

purpose of this research is three-fold: (1) to illustrate that the inter-period correlation in ground-

motion simulations is a critical feature that affects the variability of the nonlinear structural 

response that should be included as a key validation parameter, (2) to develop an avenue for 

improving the correlation in the simulations, and (3) to provide an example application.  

To achieve these goals, the research consists of four major components: (1) development of a 

ground motion model for smoothed Fourier amplitude spectra, (2) development of a ground motion 

model for the inter-frequency correlation of epsilon for smoothed Fourier amplitude spectra, (3) 

demonstration of the importance of the inter-frequency correlation in simulations for capturing the 

variability of structural response, and an assessment of the correlations in existing simulation 

methods, and (4) implementation of the correlation into the simulation method EXSIM.  

This chapter summarizes each previous chapter, reviews the principal conclusions, and provides 

recommendations for future work. 

Chapter 2 

In this chapter, an empirical ground-motion model (GMM) is developed for shallow crustal 

earthquakes in California and Nevada based on the NGA-West2 database (Ancheta et al., 2014). 

Rather than the traditional response spectrum GMM, this model is developed for the smoothed 

effective amplitude spectrum (?@A), as defined by PEER (Goulet et al., 2018). The ?@A is the 
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orientation-independent horizontal component Fourier amplitude spectrum (N@A) of ground 

acceleration. The model is developed using a database dominated by California earthquakes, but 

takes advantage of crustal earthquake data worldwide to constrain the magnitude scaling and 

geometric spreading. The near-fault saturation is guided by finite-fault numerical simulations and 

non-linear site amplification is incorporated using a modified version of Hashash et al., (2018). 

The model is applicable for rupture distances of 0 – 300 km, ' 3.0 – 8.0, and over the frequency 

range 0.1 – 100 Hz. The model is considered applicable for 4e~� in the range 180 – 1500 m/s, 

although it is not well constrained for 4e~� values greater than 1000 m/s. Models for the median 

and the aleatory variability of the ?@A are developed. 

Recommendations for future work include: 

1. Developing regionalized models for Japan and Taiwan to account for the known 

differences in regional crustal structure. The linear 4e~� scaling (G‘), soil depth scaling 

(Gnn), anelastic attenuation (G—) and spectral shape (Gn) coefficients can all be regionalized. 

2. Improving the scaling of the EAS at high frequencies. Improvements to the model may 

include explicit data regression to frequencies greater than 24 Hz, developing a region-

specific È − 4e~� relationship, or calculating one directly from the database used. 

3. Adding hanging-wall effects to the model. The hanging-wall effect, characterized by 

increased ground motion amplitudes on the hanging-wall side of dipping ruptures, is not 

well constrained by the data. For NGA-West2, Donahue and Abrahamson (2013) 

investigated these effects for response spectra using finite-fault simulations, and the results 
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were incorporated in the Abrahamson et al., (2014) model. The ?@A of the Donahue and 

Abrahamson (2013) simulations could be utilized to develop analytical constraints on the 

hanging-wall scaling for EAS. 

4. Adding directivity effects to the model. Similarly, directivity effects are well-known but 

are not well constrained by the data and have been proven to be difficult to model. Using 

finite fault simulations to supplement the empirical data for modeling directivity effects in 

coordination with the EAS model is a future opportunity. 

5. Adding nonlinear site effects into the standard deviation. The EAS GMM standard 

deviation model is linear, meaning it does not account for the effects of nonlinear site 

response. An improved formulation would involve estimating the standard deviation of the 

rock motion by removing the site amplification variability (which needs to be determined 

analytically) from the surface motion and computing the variability of the soil motion using 

numerical simulations, such as Hashhash et al. (2018) with propagation of errors. 

Chapter 3 

In this chapter, an empirical GMM for the inter-frequency correlation of epsilon ("#) for smoothed 

?@A is presented. Residuals from the GMM developed in Chapter 2 are partitioned into between-

event, between-site, and within-site components, and a model is developed for the total correlation 

between frequencies. The total correlation model features a two-term exponential decay with the 

natural logarithm of frequency. At higher frequencies, the model differs substantially from 

previously published models, where the ground-motion smoothing technique used has a large 
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effect on the resulting correlations. The empirical "# are not found to have statistically significant 

magnitude, distance, site parameter, or regional dependence. The model is applicable for crustal 

earthquakes in active tectonic regions worldwide, for rupture distances of 0 – 300 km, ' 3.0 – 8.0, 

and over the frequency range 0.1 – 24 Hz. This correlation model can be used to define the inter-

frequency correlation in stochastic ground-motion simulation methods. It is also appropriate for 

use in validation studies of the inter-frequency correlations from physics-based numerical 

simulations for ground motions. To be consistent with the empirical EAS data, the standard EAS 

approach for smoothing the FAS needs to be used for the simulations. 

Recommendations for future work include: 

1. Developing models for the individual components of the inter-frequency correlation. 

Although a model for the total correlation is most practical, models for the individual 

correlation components may also be useful for improving ground motion simulations.  

2. Evaluating the inter-frequency correlation for possible regional differences. The 

conclusions about the regional variations of the correlation were not strong, primarily 

because data outside the US is relatively limited, and because the GMM for non-CA 

regions was still under development at the time of writing. In a future update, regional 

variations in "# can be studied using more data and a polished non-CA region ?@A GMM. 

Chapter 4 

In this chapter, two goals are achieved. First, "# is demonstrated to be an essential component of 

ground motions for capturing the variability of structural response that is needed in seismic 
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fragility and seismic risk studies. Namely, the effect of "# propagates through the structural 

response and into to seismic risk calculations. Without the adequate inter-period correlation of 

ground motions, variability in the structural response may be under-estimated. This leads to 

structural fragilities which are too steep (under-estimated dispersion parameter %) and propagates 

through to non-conservative estimates of seismic risk.  

Second, multiple existing ground-motion simulation methods are evaluated by comparing their 

inter-frequency correlations with empirical models. None of the six finite-fault simulation methods 

tested adequately capture the inter-period correlations over the entire frequency range evaluated, 

although several of the methods show promise, especially at low frequencies. Using the correlation 

of the Fourier spectra provides better feedback in terms of how to modify simulation methods than 

when using response spectra comparisons because Fourier spectra are more closely related to the 

physics in the simulations.  

Recommendations for future work include: 

1. Further evaluating the causal features of the correlation in the deterministic (low-

frequency) portion of the simulations. Sensitivity studies on the rupture characterization 

should be among the first tests, including the rupture initiation timing perturbations, spatial 

correlation of slip, slip-rate functions and rise time perturbations. Tests can also be 

performed using asperity-based source models. 

2. Evaluating other 3D simulation methods, including SCEC CyberShake simulations. 

3. Further evaluating the Rodgers et al., (2018) simulations, including multiple realizations 
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of the source, and potentially other scenarios, to distinguish the between-event and 

between-site correlation components. 

Chapter 5 

In this chapter, approaches are developed to incorporate the observed "#	into the finite-fault 

simulation algorithm EXSIM (Atkinson and Assatourians, 2015). The correlation is incorporated 

into the Fourier amplitude spectra of each EXSIM sub-source, but this results in lower than desired 

"#, meaning there is destructive interference of the correlation between sub-sources. EXSIM has 

been calibrated using no correlation between frequencies, and to incorporate the correlation on a 

sub-source level, these previous calibrations of parameters will need to be updated. As an 

alternative, the "# can be added to the simulations as a post-processing modification. This approach 

is not preferable but achieves the short-term goal of being be able to prescribe the correlation of 

the full waveform seen in the data for other applications, e.g. structural risk. This method is 

implemented successfully on the SCEC Broadband Platform. 

In the long term, the preferable approach is to incorporate the correlation into seismological models 

(EXSIM, as well as others) through the foundational elements (source, path, site) so that the models 

most closely represent the earthquake process. 

Recommended future research topics include: 

1. Calibrating the EXSIM sub-source implementation to match the observed "#. 

2. Calibrating "#	of other BBP finite-fault simulation methods. 
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3. Upon successful calibration of "#, performing validations of the simulation methods 

(median and standard deviation of response spectra) to confirm that the calibration does 

not introduce adverse effects into other features of the simulated time series.  
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Appendix A: 

EAS GMM Residual Figures 

This appendix contains a set of residual figures from the EAS model developed in Chapter 2. 

Between-event, between-site, and within-site residuals are presented for the following frequencies: 

0.1, 0.15, 0.2, 0.3, 0.5, 0.8, 1, 1.5, 2, 3, 5, 8, 10, 15, 20, and 24 Hz. 
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Between-event and Between-site Residuals 

 

Figure A-1. Between-event residuals (UV∆) versus ', Jhiµ, and N∂∑ and between-site residuals (UA2Ae) 
versus 4e~�, for 0 = 0.1 Hz. 
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Figure A-2. Between-event residuals (UV∆) versus ', Jhiµ, and N∂∑ and between-site residuals (UA2Ae) 
versus 4e~�, for 0 = 0.15 Hz. 
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Figure A-3. Between-event residuals (UV∆) versus ', Jhiµ, and N∂∑ and between-site residuals (UA2Ae) 
versus 4e~�, for 0 = 0.2 Hz. 
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Figure A-4. Between-event residuals (UV∆) versus ', Jhiµ, and N∂∑ and between-site residuals (UA2Ae) 
versus 4e~�, for 0 = 0.3 Hz. 
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Figure A-5. Between-event residuals (UV∆) versus ', Jhiµ, and N∂∑ and between-site residuals (UA2Ae) 
versus 4e~�, for 0 = 0.5 Hz. 
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Figure A-6. Between-event residuals (UV∆) versus ', Jhiµ, and N∂∑ and between-site residuals (UA2Ae) 
versus 4e~�, for 0 = 0.8 Hz. 
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Figure A-7. Between-event residuals (UV∆) versus ', Jhiµ, and N∂∑ and between-site residuals (UA2Ae) 
versus 4e~�, for 0 = 1 Hz. 
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Figure A-8. Between-event residuals (UV∆) versus ', Jhiµ, and N∂∑ and between-site residuals (UA2Ae) 
versus 4e~�, for 0 = 1.5 Hz. 
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Figure A-9. Between-event residuals (UV∆) versus ', Jhiµ, and N∂∑ and between-site residuals (UA2Ae) 
versus 4e~�, for 0 = 2 Hz. 
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Figure A-10. Between-event residuals (UV∆) versus ', Jhiµ, and N∂∑ and between-site residuals (UA2Ae) 
versus 4e~�, for 0 = 3 Hz. 
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Figure A-11. Between-event residuals (UV∆) versus ', Jhiµ, and N∂∑ and between-site residuals (UA2Ae) 
versus 4e~�, for 0 = 5 Hz. 
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Figure A-12. Between-event residuals (UV∆) versus ', Jhiµ, and N∂∑ and between-site residuals (UA2Ae) 
versus 4e~�, for 0 = 8 Hz. 
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Figure A-13. Between-event residuals (UV∆) versus ', Jhiµ, and N∂∑ and between-site residuals (UA2Ae) 
versus 4e~�, for 0 = 10 Hz. 
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Figure A-14. Between-event residuals (UV∆) versus ', Jhiµ, and N∂∑ and between-site residuals (UA2Ae) 
versus 4e~�, for 0 = 15 Hz. 
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Figure A-15. Between-event residuals (UV∆) versus ', Jhiµ, and N∂∑ and between-site residuals (UA2Ae) 
versus 4e~�, for 0 = 20 Hz. 
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Figure A-16. Between-event residuals (UV∆) versus ', Jhiµ, and N∂∑ and between-site residuals (UA2Ae) 
versus 4e~�, for 0 = 24 Hz. 
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Within-site Residuals 

 

Figure A-17. Within-site residuals (UWA∆e) versus ', >µπ∫, 4e~�, and Jn for 0 = 0.1 Hz. 
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Figure A-18. Within-site residuals (UWA∆e) versus ', >µπ∫, 4e~�, and Jn for 0 = 0.15 Hz. 
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Figure A-19. Within-site residuals (UWA∆e) versus ', >µπ∫, 4e~�, and Jn for 0 = 0.2 Hz. 
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Figure A-20. Within-site residuals (UWA∆e) versus ', >µπ∫, 4e~�, and Jn for 0 = 0.3 Hz. 
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Figure A-21. Within-site residuals (UWA∆e) versus ', >µπ∫, 4e~�, and Jn for 0 = 0.5 Hz. 



 220 

 

Figure A-22. Within-site residuals (UWA∆e) versus ', >µπ∫, 4e~�, and Jn for 0 = 0.8 Hz. 
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Figure A-23. Within-site residuals (UWA∆e) versus ', >µπ∫, 4e~�, and Jn for 0 = 1 Hz. 
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Figure A-24. Within-site residuals (UWA∆e) versus ', >µπ∫, 4e~�, and Jn for 0 = 1.5 Hz. 
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Figure A-25. Within-site residuals (UWA∆e) versus ', >µπ∫, 4e~�, and Jn for 0 = 2 Hz. 
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Figure A-26. Within-site residuals (UWA∆e) versus ', >µπ∫, 4e~�, and Jn for 0 = 3 Hz. 
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Figure A-27. Within-site residuals (UWA∆e) versus ', >µπ∫, 4e~�, and Jn for 0 = 5 Hz. 
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Figure A-28. Within-site residuals (UWA∆e) versus ', >µπ∫, 4e~�, and Jn for 0 = 8 Hz. 
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Figure A-29. Within-site residuals (UWA∆e) versus ', >µπ∫, 4e~�, and Jn for 0 = 10 Hz. 
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Figure A-30. Within-site residuals (UWA∆e) versus ', >µπ∫, 4e~�, and Jn for 0 = 15 Hz. 
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Figure A-31. Within-site residuals (UWA∆e) versus ', >µπ∫, 4e~�, and Jn for 0 = 20 Hz. 
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Figure A-32. Within-site residuals (UWA∆e) versus ', >µπ∫, 4e~�, and Jn for 0 = 24 Hz. 
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Within-site Residuals Binned by M 

 

Figure A-33. Within-site residuals (UWA∆e) versus >µπ∫, binned by ',  for 0 = 0.1 Hz. 
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Figure A-34. Within-site residuals (UWA∆e) versus >µπ∫, binned by ',  for 0 = 0.15 Hz. 
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Figure A-35. Within-site residuals (UWA∆e) versus >µπ∫, binned by ',  for 0 = 0.2 Hz. 
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Figure A-36. Within-site residuals (UWA∆e) versus >µπ∫, binned by ',  for 0 = 0.3 Hz. 
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Figure A-37. Within-site residuals (UWA∆e) versus >µπ∫, binned by ',  for 0 = 0.5 Hz. 



 236 

 

Figure A-38. Within-site residuals (UWA∆e) versus >µπ∫, binned by ',  for 0 = 0.8 Hz. 
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Figure A-39. Within-site residuals (UWA∆e) versus >µπ∫, binned by ',  for 0 = 1 Hz. 
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Figure A-40. Within-site residuals (UWA∆e) versus >µπ∫, binned by ',  for 0 = 1.5 Hz. 
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Figure A-41. Within-site residuals (UWA∆e) versus >µπ∫, binned by ',  for 0 = 2 Hz. 
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Figure A-42. Within-site residuals (UWA∆e) versus >µπ∫, binned by ',  for 0 = 3 Hz. 
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Figure A-43. Within-site residuals (UWA∆e) versus >µπ∫, binned by ',  for 0 = 5 Hz. 
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Figure A-44. Within-site residuals (UWA∆e) versus >µπ∫, binned by ',  for 0 = 8 Hz. 
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Figure A-45. Within-site residuals (UWA∆e) versus >µπ∫, binned by ',  for 0 = 10 Hz. 



 244 

 

Figure A-46. Within-site residuals (UWA∆e) versus >µπ∫, binned by ',  for 0 = 15 Hz. 
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Figure A-47. Within-site residuals (UWA∆e) versus >µπ∫, binned by ',  for 0 = 20 Hz. 
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Figure A-48. Within-site residuals (UWA∆e) versus >µπ∫, binned by ',  for 0 = 24 Hz. 
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Appendix B: 

MATLAB program for the EAS GMM 

This appendix contains a MATLAB program to implement the EAS GMM developed in Chapter 

2. The program includes tables of model coefficients. The program is included as an electronic 

attachment to this dissertation. 
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Appendix C: 

Tables for the model for the inter-frequency correlation of 

epsilon for Fourier Amplitude Spectra 

This electronic appendix contains tables related to the correlation model developed in Chapter 3. 

There are six tables. Table C1 lists the 239 frequencies spanning 0.1-24 Hz, and each 239x239 

correlation matrix in Tables C2 through C6 aligns with these frequencies.  

List of Tables: 

• Table C1: The full range of frequencies, model coefficients, and EAS standard deviations 

for calculating the total correlation. 

• Table C2: The empirical correlation matrix for Between-event residuals. 

• Table C3: The empirical correlation matrix for Between-site residuals. 

• Table C4: The empirical correlation matrix for Within-site residuals. 

• Table C5: The total empirical correlation matrix. 

• Table C6: The model total correlation matrix. 

 


