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Abstract

Physics-based earthquake simulations, which predict the ground-motions generated by scenario
earthquakes, have the potential to be extremely useful in dynamic analyses of structures because
they can be generated for scenarios not well represented in the empirical data set such as M8
earthquakes and for site/source-specific rupture geometries. But before simulations are accepted
for engineering applications, they first need be validated against recorded data and empirical
models. Recent efforts have made significant progress towards validation by considering the
median predictions of simulations (e.g. Goulet et al., 2015), but further work is still required in
order to validate other critical ground-motion properties. This dissertation develops the framework
for validation of one important parameter: the inter-period correlation of epsilon (€) of ground-
motions. The purpose of this research is three-fold: (1) to illustrate that the inter-period correlation
of € (p.) is a critical feature of ground motions that influences variability of structural response

and which should be considered as a validation parameter, (2) to develop an avenue for improving
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the correlation in the simulations, and (3) to provide an example application which can help guide

future calibrations.

To achieve these goals, an empirical ground-motion model (GMM) is developed for smoothed
Fourier amplitude spectra (FAS), and the residuals from this model are used to develop a model
for the p. of the FAS. The FAS is used because it is a more direct representation of the frequency
content of the ground motions than response spectra and is better understood by seismologists.
Using simple ground-motion simulations based on the point-source stochastic method, the
importance of the p. of FAS in capturing the variability of structural response is demonstrated.
Results show that without the adequate p. of FAS in the simulations, variability in the structural
response may be under-estimated. This leads to structural fragilities which are too steep (under-

estimated dispersion parameter ) and to non-conservative estimates of seismic risk.

To commence the validation process, p. of the smoothed FAS of several established ground-
motion simulation methods are compared with the p. observed in data. None of the six finite-fault
simulation methods tested adequately capture the p. over the entire frequency range evaluated,
although several of the methods show promise, especially at low frequencies. The validation is
performed for the FAS because this information provides the developers of the simulation methods
better feedback in terms of how they can modify their methods that is not clear when using
response spectra comparisons. Finally, the calibration of p. for one simulation method, EXSIM
(Aktinson and Assatourians, 2014) is demonstrated and tested. Recommendations are provided for

future p. calibration efforts.
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Chapter 1:

Introduction



Research Objectives

The seismological community has been developing methods to numerically simulate seismograms
for engineering applications. To date, the amplitudes of numerical simulation have been used in
engineering practice to constrain ground-motion models; however, the seismograms have not been
adequately validated for other characteristics including the variability of the Fourier spectra.
Without adequate validation, the time series from the numerical simulations are not ready for use

in engineering applications.

This dissertation contributes to improving ground-motion simulations, precisely with respect to
their inter-frequency correlation. The purpose of this research is three-fold: to illustrate that the
inter-period correlation in ground-motion simulations is a critical feature which should be
considered as a validation parameter, to develop an avenue for improving the correlation in the

simulations, and to provide an example application which can help guide future calibrations.

This introduction chapter provides some background on the inter-frequency correlation of ground-
motions, presents a literature review of the related topics, and closes with a description of the

subsequent dissertation chapters.

Background and Motivation

To define the inter-frequency correlation, some background is first given on earthquake ground-
motion models (GMMSs, also called ground-motion prediction equations, GMPEs, or attenuation
models). GMMSs are used for estimating the level of ground shaking at a site, including the

variability in that level, based on earthquake magnitude, source-to-site distance, local site
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conditions, and other seismological parameters. Among other applications, GMMs are often used
in probabilistic seismic hazard analyses (PSHA), including those performed to develop the U.S.
Seismic Design Maps (ASCE, 2016). GMMs can be developed using recorded ground-motions,

using numerical earthquake simulations, or a combination of both approaches.

Empirical GMM residuals are the difference, in logarithmic units, between the recorded ground
shaking and the median ground shaking predicted by the GMM. These residuals are typically
partitioned into between-event residuals (6B), and within-event residuals (6W), following the
notation of Al Atik et al., (2010). For large numbers of recordings per earthquake, the between-
event residual is approximately the average difference in logarithmic-space between the observed
Intensity Measure (IM) from a specific earthquake and the IM predicted by the GMM. The within-
event residual (6W) is the difference between the IM at a specific site for a given earthquake and
the median IM predicted by the GMM plus §B. By accounting for repeatable site effects, SW can
further be partitioned into a site-to-site residual (6525) and the single-station within-event residual

(6WS) (e.g. Villani and Abrahamson, 2015).

The residual components §B, §S2S and WS are well-represented as zero-mean, independent,
normally-distributed random variables with standard deviations 7, ¢s,s, and ¢, respectively (Al
Atik et al., 2010). These GMM residual components are converted to epsilon (eg, €555, and €y5)
by normalizing the residuals by their respective standard deviations. Because of the normalization,
the random variables €g, €5,5, and €, 5 are represented by standard-normal distributions (mean=0,
variance=1). If the total residual is used, then the resulting €;,¢,; Will, in general, not have zero

mean due to the uneven sampling of recordings per earthquake in per site in the data set.
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For a given recording, the values of € at neighboring periods (T) are correlated. For example, if a
ground motion is stronger than average at T=1.0 s, then it is likely to also be stronger than expected
at nearby periods, e.g. T=0.8 s or T=1.2 s; however, for a widely-spaced period pair (e.g. T=10.0
s compared with T=1.0 s), the € values will be weakly correlated. The inter-period correlation
coefficient, p, quantifies the relationship of € values between periods for a given recording. The
correlation can also be described in terms of ground-motion frequency (f, where f = 1/T), and

so the terms inter-period and inter-frequency are used interchangeably in this dissertation.

The correlation coefficient of two random variables is a measure of their linear dependence. In this
case, € calculated from a large set of ground motions at different frequencies (f) are random
variates. The correlation coefficient between €(f;) and €(f,) can be estimated using a maximum
likelihood estimator, the Pearson-product-moment correlation coefficient, p (Fisher, 1958). The

correlation coefficient for a sample of € at frequencies f; and f, is given by Equation 1-1,

cov(e(f). e(f3)) _ (e — e())(e(r) — ()
PR s () - G0 B ) — €0’

1-1)

Pe(r)e(fz) =

where cov is the covariance, o is the standard deviation, n is the total number of observations, i is

the i" observation of €, and €(f;) and €(f,) are the sample means of € at frequencies f; and f5,
respectively. The € will be equal to zero if the GMM is unbiased. The relation for p(f,y ¢(r,) given
in Equation 1-1 is reciprocal: the correlation coefficient between two given frequencies is the same
regardless of which frequency is the conditioning frequency. To account for all three residual

terms, the total correlation is calculated as shown in Equation 1-2,
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Pe,total (v f2) =

ps(f1, £)T(F)T(2) + ps2s(fi 2) Psas (1) Ps2s(F2) + pws (1 [2)Dss (F1) Pss (f2)
a(fa(fz)

(1-2)

where pg (fi, f>) is the correlation of the normalized between-event residuals, pg,s(fi, f>) is the
correlation of the normalized site-to-site residuals, and pys(fi, f>) is the correlation of the

normalized single-station within-event residuals.

Using a database of residuals, the calculation of pe(f,) ¢(r,) can be repeated for every frequency

pair of interest. Figure 1-1 shows a graphical representation of this step at three example frequency
pairs. The resulting correlation coefficients for each pair of frequencies can be saved as tables (e.g.
Abrahamson et al., 2014; Al Atik, 2011; Akkar et al., 2014; Azarbakht et al., 2014; Jayaram et al.,
2011), or can be empirically modeled. For modern GMMs, models of the correlation of € are
commonly created for PSA (e.g. Baker and Cornell, 2006; Baker and Bradley, 2017; Baker and
Jayaram, 2008; Cimellaro 2013; Goda and Atkinson, 2009). Recently, correlation models for €
from Fourier amplitude spectra (FAS) have also been developed (e.g. Stafford, 2017; and Chapter

3 of this dissertation).
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Figure I-1. € values at pairs of frequencies calculated from a database of ground motions, exhibiting the
correlation dependent on frequency spacing. Left: f; = 0.2 Hz and f, = 5.0 Hz. Middle: f; =
0.2 Hz and f, = 0.3 Hz. Right: f; = 0.2 Hz and f, = 0.2 Hz

Physical Meaning and Relevance of p.

Because larger-than-average ground motions tend to be from local spectral peaks and lower-than-
average ground motions tend to be from local spectral troughs, the parameter € is an indicator of
the peaks and troughs at a given frequency in a spectrum. And since p. is a measure of the linear
dependence of € between two frequencies, it follows that p. characterizes the relative width of
these extrema. For example, very high p. (values close to one) over broad frequency pairs indicate
wide peaks and troughs in the spectra; leading to smoother undulating spectra. Conversely, very
low p. (values close to zero) between neighboring frequency pairs indicate very narrow peaks and

troughs; leading to ‘noisy’ looking spectra.

The generic term ‘spectra’ can refer to either PSA or FAS. PSA spectra are the peak response from
a single degree of freedom oscillator system. PSA spectra are influenced by a range of frequencies,
and the breadth of that range is dependent on the oscillator period (discussed in Chapter 2) and on
the damping. The FAS provides a more direct representation of the frequency content of the ground
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motions, and because the Fourier transform is a linear operation, the FAS is a much more
straightforward representation of the ground motion and is better understood by seismologists than
PSA. This simpler behavior makes the FAS preferable over PSA for incorporating inter-period
correlation into numerical methods for ground-motion simulations, and it is the primary IM

adopted in this study.

Because p. is a measure of the width of spectral peaks, it has relevance in dynamic structural
response. For linear response, a structure will be sensitive to the frequency content over a range of
frequencies about the natural frequency of the structures. For the uncorrelated case, if the € value
at a given frequency is a high positive value (corresponding to a peak), the values of € at the nearby
frequencies will be randomly high or low, so the response of the structure will not be strongly
affected by the ground motion at these neighboring frequencies; however, for the correlated case,
the values of € at the nearby frequencies will tend to also be positive values so the response of the
structure will increase by a larger factor due to the increased response from the neighboring
frequencies. During nonlinear seismic response, the effect of the correlation can be even greater
than for linear response. For nonlinear response, structures can experience softening characterized
by elongation of their natural vibration period (Lin et al., 2008; Bradford 2007). This occurs when
damage to the structural elements leads to large strains which reduce the effective stiffness and
increases effective damping. As a structure softens, its effective fundamental period increases, and
the response will depend on if the structure is softening into a peak or a trough in the spectrum.
For the correlated case, the chance of softening into a peak or a trough will depend on the breadth

of a ground motion spectral peak or trough, thereby affecting the structural response. The aggregate



effect is the variability in structural response is higher for ground motions with realistic p. than

for ground motions with unrealistically low p.; this point is demonstrated in Chapter 4.

Ground-Motion Simulations

Methods for simulating the ground motions generated by earthquakes have been developed and
refined over the past several decades. “Physics-based” earthquake ground-motion simulations can
be defined as the prediction of the ground-motion generated by earthquakes by means of numerical
methods and models that explicitly incorporate the physics of the earthquake source and the
resulting propagation of seismic waves (Taborda and Roten, 2014). Simulations methods described
as “stochastic” rely less on solving the equation of motion and are calibrated empirically. “Hybrid”
techniques employ some combination of the physics-based and stochastic-based approaches.
These methods vary in technique and complexity, but most of them generate the same product; a
simulated time series of ground motion at a select location on the earth surface. For more

information, Burks (2014) provides an excellent review of existing simulation methods.

Engineering Utilization of Simulations

Simulations have the potential to be extremely useful in engineering applications, particularly
when earthquake time series are required for input into dynamic structural analyses. There are
limited numbers of ground-motion recordings for large magnitude earthquakes recorded at close
distances, and simulations can fill this gap in the recorded databases. There are several potential
applications of simulations of large magnitude, near source scenarios. First, for sites located near

active major faults, simulations can provide scenario ground motions for deterministic design and



analyses. Similarly, simulations can be used to constrain the near-source magnitude scaling of
ground-motion models (e.g. Chapter 2), which are in turn used in PSHA. Or, simulations can be
used explicitly to perform PSHA, which has the potential to reduce uncertainties by capturing the
complex physics that are ignored using traditional PSHA methods (e.g. CyberShake; Graves et al.,
2011). Simulations also have application beyond just near-source, large magnitude scenarios.
Because they provide the full time series of ground motion, the simulations can be used to analyze
the dynamic response of geotechnical models and engineered structures. The source- and site-
specific nature of simulations means the ground motions have the potential to contain rupture

directivity pulses, static offset, and directionality.

Validation of Simulations

There is increasing recognition that simulations can be utilized as described above, but for the
simulations to be accepted, they should be validated first. Validation means that the simulations
should produce ground-motions consistent with observations (Burks, 2014). Validations can be

broadly categorized as either comparisons with recorded data or with empirical models.

Several examples of validation exist in the literature. The earliest examples used qualitative
measures for subjectively validating the methods, including comparisons of waveforms by the
same researcher who developed the method and performed the simulation. More recent validations
are performed by third parties and attempt to develop criteria for objectively assessing the
simulations in a consistent manner. Examples of recent validations include Burks and Baker

(2014), Goulet et al., (2015) and Luco et al., (2016).



Burks and Baker (2014) proposed a validation framework based off three main structural response
proxies: the inter-period correlation of € for response spectra, the ratio of maximum-to-median
spectral acceleration across all horizontal orientations, and the ratio of inelastic-to-elastic
displacement. The conclusions from Burks and Baker (2014) regarding the inter-period correlation
of € for response spectra are addressed in Chapter 4. In short, the simulation methods need

calibration with respect to this parameter.

In the year 2013, the ‘Broadband Platform Validation Exercise’ was organized by the Southern
California Earthquake Center (SCEC; Dreger et al., 2015 and Goulet et al., 2015). This exercise
evaluated several simulation methods on the suitability of simulated PSA for use in engineering
applications. This validation exercise focused on evaluating the median PSA for a gauntlet of
subjective and objective validation criteria, using both recorded earthquakes and GMMs. The
Dreger et al. (2015) validation exercise was an important first step towards a more complete

validation of the simulation methods considered.

The SCEC Ground Motion Simulation Validation (GMSV) Technical Activity Group was planned
in coordination with the Dreger et al., (2015) validation effort. As document in Luco et al., (2016),
this group developed rating systems for collections of ground-motion parameters related to
structural response. The inter-frequency correlation of € was suggested for validation but was

determined to be outside the scope of the project.

The aforementioned efforts are three examples of successful validation schemes, even though not
all of the simulation methods were deemed acceptable for all metrics. For the simulations to

continue on the path towards widespread approval, the methods must pass all previous validations,
10



and more validations for different properties are necessary. In addition to the Burks and Baker
(2015), Goulet et al., (2015), and Luco et al., (2016) parameters, other ground-motion properties
which need to be validated are listed below. Validations of the aleatory variability and the inter-
frequency correlation of € (FAS first, then PSA) should be the first priority after performing
validations for the median response. This is because the appropriate p, is required for simulations
to be used in seismic risk, as described in Chapter 4. The research described in this dissertation
focuses on the inter-frequency correlation of €, and beyond just validation, an avenue is developed
for improving the correlation in the simulations. Validation of the remaining properties should be

the topics of future research.
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Additional ground-motion properties for validation

1. Median ground-motions
a. PSA (5% damped). This is the Dreger et al., (2014) case, which did not address
other features.
b. FAS
c. PSA and FAS, vertical component
2. Other FAS features
a. Inter-frequency correlation of €
b. Aleatory variability
c. Variability between horizontal components
3. Duration features
a. Acceleration-based (high frequencies)
b. Velocity-based (intermediate frequencies)
4. Damping scale factors
a. Scale factors from 2% to 30% damping (high damping for base isolation)
5. Peak velocity scaling
a. Ratio of peak ground velocity to PSA at T=1 sec
b. Separation of within-basin and outside basin sites
6. V/H ratio for FAS

a. Check for the linear site response range

Literature Review

Fourier amplitude spectra GMMs

GMMs for Fourier amplitude spectra are less common than their response spectrum counterparts.
Douglas (2018) summarized all GMMs published worldwide between 1964 and early 2018 and
found only 16 empirical models for the prediction of Fourier amplitude spectra out of 1,243 total

models. From the past five years, only four FAS models are identified in Douglas (2018): Bora et
12



al., (2014), Bora et al., (2015), Lee et al., (2015), and Gupta and Trifunac (2017). In the short time
since the Douglas (2018) catalog release, an FAS model by Bora et al., (2018) was also accepted
for publication. Both Bora et al., (2014), and Bora et al., (2015) are developed using data from
Europe, the Middle-East and the Mediterranean regions. Lee et al., (2015) uses data from Serbia

and Gupta and Trifunac (2017) uses data from the Himalaya and northeastern India regions.

Bora et al., (2018) uses more recent data from shallow crustal earthquakes recorded globally (from
the United States, Taiwan, Japan, and Italy). This model is the closest analog to the model
developed as part of this dissertation research. However, the Bora et al., (2018) FAS model is very
simple and emphasizes fitting the data to the functional form rather than model extrapolation to
areas not well-constrained by the data. The median FAS model is developed in parallel with a
model for ground motion duration, and these are combined to compute response spectra using
random vibration theory. Since the main objective of Bora et al., (2018) is to develop a response

spectrum model, a model for the aleatory variability of the FAS is not developed.

Inter-Frequency Correlation GMMs

For modern GMMs, models of the inter-period correlation of € are commonly created for PSA
(e.g. Baker and Cornell, 2006; Baker and Bradley, 2017; Baker and Jayaram, 2008; Cimellaro
2013; Goda and Atkinson, 2009; Abrahamson et al., 2014). If not modeled, the correlation has
been saved as tables (e.g. Abrahamson et al., 2013; Al Atik, 2011; Akkar et al., 2014; Azarbakht
et al., 2014; Jayaram et al., 2011). The Baker and Jayaram (2008) inter-period correlation model

for within-event € is based on PSA from crustal earthquakes. Using an updated database, Baker
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and Bradley (2017) confirmed that the updated correlations were largely consistent with the Baker

and Jayaram (2008) model.

Stafford (2017) developed FAS-based p. models for the between-event, between-site and within-
site components of residuals based on the NGA-Westl database (Chiou et al., 2008). This study
used unsmoothed FAS ordinates and used both as-recorded horizontal components of the ground-
motions. Due to these differences in the smoothing of the FAS and the treatment of the two
horizontal components, the resulting correlation models are not directly comparable. The

differences between the Stafford model and the model developed here are discussed in Chapter 3.

Validation of the Inter-Frequency Correlation and Variability of Simulations

Recent validation efforts by Burks and Baker (2014) and Luco et al., (2016) are described
previously. Bijelic et al., (2018) performed assessments of building performance using sets of
recorded and SCEC simulated motions with matching spectral shape and duration. They found a
bias in the response of structures under the simulated ground motions caused by the lack of inter-
period correlation of the simulations; this conclusion is expanded upon in Chapter 4 of this

dissertation.

Wang and Jordan (2014) applied a technique named Average-Based Factorization (ABF) to
compare simulation-based and GMM-based seismic hazard models. ABF uses a hierarchical
averaging scheme to separate the simulated ground-motions into relative (dimensionless)
excitation fields representing site, path, directivity, and source effects. ABF partitions the variance

of each of these effects into uncorrelated components, which allows for a component-wise
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comparison between the variability of CyberShake simulations and empirical GMMs. Wang and
Jordan (2014) found that for a large ensemble of CyberShake simulations (prototype version
CS11), the total CS11 PSA variance is about 60% higher than the NGA-Westl GMMs
(Abrahamson et al., 2008) at 2s and almost 30% lower at 10s. This study falls under the category

of validation against empirical models.

Organization

This dissertation is organized into six chapters. Following this introduction, there are four main
chapters. The dissertation culminates with a chapter summarizing the results and recommending
future research areas. The content of the four body chapters are described below. Chapters 2 and
3 have been submitted for publication and Chapter 4 has been accepted for publication; these
chapters underwent minor cosmetic modifications from their published versions in order to

maintain consistency with the other dissertation chapters.

Chapter 2 describes the development of a ground-motion model for smoothed Fourier amplitude
spectra using data recorded in California and Nevada. Generating this model served two main
purposes. First, it can be used by others in future applications. Second, a natural result of ground-
motion modeling is the residuals, which are used to develop a model for the correlation of the
residuals between frequencies. This correlation model is the foundation of the following chapters.
This chapter is modified from the paper entitled “An empirical model for Fourier amplitude spectra
using the NGA-West2 database”, authored by Jeff Bayless and N.A. Abrahamson, has been
submitted for publication in the journal Bulletin of the Seismological Society of America, and is

currently under review.
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Chapter 3 describes the development of the model for the correlation of Fourier amplitude spectra
residuals between frequencies, based off the EAS residuals from Chapter 2. This chapter is
modified from the paper entitled “An empirical model for the inter-frequency correlation of epsilon
for Fourier amplitude spectra”, authored by Jeff Bayless and N.A. Abrahamson, which has been
submitted for publication in the journal Bulletin of the Seismological Society of America, and is

currently under review.

Chapter 4 is composed of two parts. First, the inter-frequency correlation is demonstrated to be a
critical feature which should be considered as a validation parameter in ground-motion
simulations, because it relates to the variability of dynamic structural response which controls
seismic risk. Second, the inter-frequency correlations in multiple established simulation methods
are evaluated to provide guidance for future calibration. This chapter is modified from the paper
entitled “Evaluation of the inter-period correlation of ground motion simulations”, authored by
Jeff Bayless and N.A. Abrahamson, and has been accepted for publication in the journal Bulletin
of the Seismological Society of America. As this paper was designed to be a standalone article,

some material from this introduction chapter is repeated in Chapter 4.

Chapter 5 focuses on techniques to adjust the inter-frequency correlation in simulations to be
consistent with the empirical model developed in Chapter 4. The simulation method EXSIM
(Aktinson and Assatourians, 2014) is used as an example application of the inter-frequency
correlation model. The challenges associated with this implementation are documented and

recommendations are provided for future calibration efforts.

16



Chapter 2:
An empirical model for Fourier amplitude spectra using the

NGA-West2 database
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Abstract

An empirical ground-motion model (GMM) for shallow crustal earthquakes in California and
Nevada based on the NGA-West2 database (Ancheta et al., 2014) is presented. Rather than the
traditional response spectrum GMM, this model is developed for the smoothed effective amplitude
spectrum (E'AS), as defined by PEER (Goulet et al., 2018). The EAS is the orientation-independent
horizontal component Fourier amplitude spectrum (FAS) of ground acceleration. The model is
developed using a database dominated by California earthquakes, but takes advantage of crustal
earthquake data worldwide to constrain the magnitude scaling and geometric spreading. The near-
fault saturation is guided by finite-fault numerical simulations and non-linear site amplification is
incorporated using a modified version of Hashash et al., (2018). The model is applicable for rupture
distances of 0 — 300 km, M 3.0 — 8.0, and over the frequency range 0.1 — 100 Hz. The model is
considered applicable for Vs, in the range 180 — 1500 m/s, although it is not well constrained for
Vs30 values greater than 1000 m/s. Models for the median and the aleatory variability of the EAS
are developed. Regional models for Japan and Taiwan will be developed in a future update of the
model. A MATLAB program that implements the EAS GMM is provided in Appendix B of this

dissertation.
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Introduction

The traditional approach for developing ground-motion models (GMMs) for engineering
applications is to use response spectral values for a range of spectral periods. The response spectra
GMMs can be used in either deterministic or probabilistic seismic hazard analyses to develop
design response spectra. The response spectral values represent the response of a simple structure
to the input ground motion and does not directly represent the ground motion itself. As an
alternative, Fourier spectral values can be used instead of response spectral values. There are
several advantages to using Fourier spectra in place of response spectra: (1) the scaling of Fourier
spectra in the GMM is easier to constrain using seismological theory, (2) linear site response
remains linear at all frequencies and does not depend on the spectral content of the input motion,
as is the case for response spectra (Bora et al., 2016), and (3) for calibrating input parameters and
methods for finite-fault simulations based on comparisons with GMMSs, Fourier spectra are more

closely related to the physics in the simulations.

An empirical Fourier spectrum GMM for shallow crustal earthquakes in California and Nevada
based on the Pacific Earthquake Engineering Research Center (PEER) Next Generation
Attenuation-West 2 (NGA-West2) database (Ancheta et al., 2014) is developed. The ground-
motion parameter used in the GMM is the smoothed effective amplitude spectrum (EAS), as
defined by PEER (Goulet et al., 2018). The EAS is the orientation-independent horizontal
component Fourier amplitude spectrum (FAS) of ground acceleration that can be used with random

vibration theory to estimate the response spectral values.
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This paper describes the development of the empirical model using ground-motion data as the
foundation, along with finite-fault simulations computed using the SCEC Broadband Platform
(Maechling et al., 2015) to constrain the near-fault large-magnitude scaling, and the analytical site
response modeling to capture the nonlinear site amplification (Hashash et al., 2018). Rather than
simply fitting the empirical data, emphasis is placed on building the model using both the empirical
data and analytical results from these seismological and geotechnical models so that the GMM
extrapolates in a reasonable manner. A MATLAB program that implements the EAS GMM is
provided in Appendix B of this dissertation. A model for the inter-frequency correlation of

residuals derived from this GMM is presented in Chapter 3.

EAS Ground Motion Intensity Measure

The Effective Amplitude Spectrum (EAS), defined in Kottke et al., (2018) and used in the PEER
NGA-East project (PEER, 2015; Goulet et al., 2018), can be calculated from an orthogonal pair of

Fourier Amplitude Spectra (FAS) using Equation 2-1:

EAS(f) = \/% [FASuc1(f)? + FASyc2(f)?] (2-1)

where FASy -, and FASy ¢, are the FAS of the two orthogonal horizontal components of the ground
motion and f is the frequency in Hz. The EAS is independent of the orientation of the instrument.
Using the average power of the two horizontal components leads to an amplitude spectrum that is

compatible with the use of RVT to convert Fourier spectra to response spectra. The EAS is
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smoothed using the Konno and Ohmachi (1998) smoothing window, which has weights and

window parameter defined by:

_ (sin(blog(f/£)\'
W)= < blog(f/f.) > (2-2)
b="27/, (2-3)

The smoothing parameters are described in Kottke et al., (2018): "W is the weight defined at
frequency f for a window centered at frequency f. and defined by the window parameter 5. The
window parameter b can be defined in terms of the bandwidth, in logio units, of the smoothing
window, b,.” The Konno and Ohmachi smoothing window was selected by PEER NGA-East
because it led to minimal bias on the amplitudes of the smoothed EAS when compared to the
unsmoothed EAS. The bandwidth of the smoothing window, b = 188.5, was selected such that
the RVT calibration properties before and after smoothing were minimally affected (Kottke et al.,
2018). For consistency with the PEER database used to develop empirical FAS models, the

smoothed EAS is used with the same smoothing parameters as described in Kottke et al. (2018).

On The Selection of Fourier Amplitudes

In seismic hazard and earthquake engineering applications, the pseudo-spectral acceleration (PSA)
of a 5% damped single degree of freedom oscillator is a commonly used IM. PSA is useful for
many applications; however it has drawbacks which are discussed here. The EAS component of
the FAS is used as the IM for this study, because the FAS is a more direct representation of the

frequency content of the ground motions than PSA and is better understood by seismologists. This
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leads to several advantages, both in the empirical modeling and in forward application. The

reasoning behind these claims is explained in this section.

The PSA calculation involves solving the differential equation for the response of an SDOF
oscillator (with given damping) due to a specified forcing function, selecting the peak response of
the oscillator, and scaling the peak oscillator displacement by the square of the oscillator natural
frequency, w. This calculation can be repeated for a range of oscillators with different natural
frequencies to develop a response spectrum. The elastic SDOF oscillator response is described by

the following second order, linear, inhomogeneous differential equation:

m*a(t) + c*v(t) + k *u(t) = p(t) (2-4)

where m is the SDOF lumped mass, a(t) denotes the SDOF lateral acceleration, ¢ denotes the
viscous damping coefficient, v(t) denotes the SDOF lateral velocity, k denotes the lateral
stiffness, u(t) denotes the SDOF lateral displacement relative to the ground, and p(t) denotes the

time-dependent forcing function due to the earthquake ground motion (Chopra, 2007).

Duhamel’s convolution integral, also known as the unit impulse response procedure, is one
approach to solving a linear differential equation, such as the one given by Equation 2-4. With this
method, the response of the system (initially at rest) to a unit impulse force is shown (e.g. in

Chopra, 2007) to be:

h(t—1) = et Dsinfwy(t —1)],t =1 (2-5)

mawg
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where 7 is the time instance of the impulse, w, is the damped natural frequency, and { is the
fraction of critical damping. The entire loading history (such as that due to ground acceleration)
can then be represented as a succession of infinitesimally short impulses, each producing its own
response of the form of Equation 2-5. Since the system is linearly elastic, the total response is the
superposition of the responses to all impulses which make up the entire loading history. Taking
the limit of the sum as the width of the impulse approaches zero leads to the general expression of

Duhamel’s integral for an arbitrary forcing function:

u(t) = f P(2)e=59C= sinwy (¢ — 7)] dr = f p(Oh(t — 1) = h(t) @ p(£) (2 —6)
0 0

Wgq

where @ is the convolution operator. Equation 2-6 is called the convolution integral because
convolution is performed in the time domain between the unit impulse response (h), and the force
due to ground acceleration (p). Then, by the convolution property of the Fourier transform, the
time-domain convolution of h and p can be expressed in the frequency domain as the point-wise

multiplication of the Fourier transforms of h and p.

In Figure 2-1, these steps are shown using an example recorded acceleration time history. In the
figure, the thin solid black line is the FAS of the recorded acceleration time history, or |F{p}|,
where F denotes the Fourier transform operator. The solid heavy lines are the FAS of the SDOF
oscillator impulse response, or |F{h}|. |[F{h}| is plotted for three different oscillator frequencies:
0.5, 2.0, and 10.0 Hz, as identified in the figure legend. The dashed lines are the FAS of the SDOF

response to the ground motion, |F{u}|, at the same three frequencies. By Equation 2-4, and the
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convolution property of the Fourier transform, for a given oscillator frequency, |F{u}| = |F{p}| *

|F{h}|. This result can be confirmed qualitatively in Figure 2-1.

Figure 2-1 illustrates that oscillators with different natural frequencies are controlled by different
frequency ranges of the ground motion. At relatively higher oscillator frequencies (e.g. 10 Hz;
green lines in Figure 2-1), where there is little energy left to resonate the oscillator, the PSA
ordinates are dominated by a wide frequency band of the ground motion that ultimately equals the
integration over the entire spectrum of the input ground motion (Bora at al., 2016). This can be
observed in Figure 2-1, where the dashed green line traces the ground motion FAS for frequencies
less than about 4 Hz. The short period PSA is then controlled by the dominant period of the input

ground motion, rather than the natural period of the oscillator.
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Figure 2-1. Fourier amplitudes developed from an example ground motion recording and SDOF oscillator
response, illustrating the range of frequencies contributing to the response spectrum
calculation.

In summary, PSA provides the spectrum of peak response from a SDOF system, which is
influenced by a range of frequencies, and the breadth of that range is dependent on the oscillator
period. The FAS provides a more direct representation of the frequency content of the ground

motions, and since the Fourier transform is a linear operation, the FAS is a much more
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straightforward representation of the ground motion. As a result, recordings from small
earthquakes can be used to constrain path and site effects without dependence on response spectral
shape. Numerous seismological models of the FAS are available (e.g. Brune 1970; Boore et al.,
2014) to provide a frame of reference during model development. Additionally, using FAS more
easily facilitates future calibration of the inter-frequency correlation of ground-motion simulation
methods because there is not a strong reversal of the correlation coefficients at high frequencies,

as described in Chapter 3.

Ground Motion Data

The PEER NGA-West2 strong-motion database includes over 21,000 three-component strong-
motion records recorded worldwide from shallow crustal earthquakes, including aftershocks, in
active tectonic regimes since 2003 (Ancheta et al, 2014). Earthquake magnitudes in the full
database range from 3 to 7.9 and rupture distances extend to over 1,500 km. Earthquakes and
recordings identified as questionable in quality or with undesirable properties are excluded; see
Abrahamson et al., (2014) for a complete list of criteria for exclusions. At distances under 100 km,
recordings from crustal earthquakes worldwide are retained to constrain the magnitude scaling and
geometric spreading. At the larger distances (up to 300 km), region-specific anelastic attenuation
and linear site effects due to the regional crustal structure are accounted for by including recordings
only from California and Nevada. Only events with at least five recordings per earthquake are

included.

The EAS has been calculated for each record in the database up to the Nyquist frequency by PEER

(Kishida et al., 2016). The usable frequency range limitations of each record are accounted for by
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applying the recommended lowest and highest usable frequencies for response spectra determined

from Abrahamson and Silva (1997) as:

Lowest Usable Frequency (LUF) = 1.25 * max(HPFy¢,, HPFyc5) 2-7)
1
Highest Usable Frequency (HUF) = T min(LPFycq, LPFycy) (2-198)

where HPF is the record high-pass filter frequency, LPF is the record low-pass filter frequency,
and HC1 and HC?2 are the two horizontal components of a three component time series. The factors
of 1.25 in Equations 2-7 and 2-8 were originally used by Abrahamson and Silva (1997) to ensure
that the filters did not have a significant effect on the response spectral values. By limiting the
usable period range using these factors, the frequency interval of the impulse response of a 5%
damped oscillator will not exceed the filter values. And retaining this usable frequency range
maintains consistency with the response spectrum calculations. Based on inspection of the usable
frequency range of the data, the LUF was restricted to a minimum value of 0.1 Hz, and the HUF
was restricted to a maximum value of 24 Hz for all recordings. Therefore, the regressions were

performed between 0.1-24 Hz.

After screening for record quality, recording distance, minimum station requirements, and
frequency limitations, the final dataset consists of 13,346 unique records from 232 earthquakes,
both of which vary as a function of frequency. Figure 2-2 shows the frequency dependence of the
number of earthquakes and recordings used in regressions steps 1 and 3 (listed in Table 2 and
explained below.) Figure 2-3 shows a magnitude versus rupture distance scatterplot of the NGA-

West2 database subsets used in regression step 1 at f = 0.2 and 10 Hz.
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Figure 2-2. Number of earthquakes and recordings from the NGA-West2 EAS database used in the
regression steps 1 and 3, versus frequency. The regressions were performed between (.1-24
Hz, and higher frequencies are included in this figure only to display the rapid reduction of
available data with increasing frequency.
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Median Model Functional Form

The model parameters are defined in Table 2-1. The scaling of the source is primarily described
by moment magnitude (M). Source effects are also modeled using the depth to the top of the
rupture plane (Z;,, ), and a style-of-faulting flag for normal faults (Fy,,; ). These source effects can
be considered as proxies for stress drop scaling. The the closest distance to the rupture plane, Ry,
is used as the distance measure for path scaling. The linear and nonlinear site effects are
parameterized using V3, the time-averaged shear-wave velocity in the top 30 m of the soil column
below the site. Use of Vi3, does not imply that 30 m is the key depth range for the site response,
but rather that V3, is correlated with the entire soil profile (Abrahamson and Silva, 2008). The
scaling with respect to soil depth is parameterized by the depth to shear-wave velocity of 1 km/s,

Z,.

Table 2-1. Model parameter definitions.

Parameter | Definition
Effective amplitude spectrum (g-sec). The EAS is the orientation-independent
EAS horizontal component Fourier amplitude spectrum (FAS) of ground
acceleration, defined in Goulet et al., (2018).
M Moment magnitude
Zior Depth from the surface to the top of the rupture plane (km)
Fyu Style of faulting flag. 1 for Normal faulting earthquakes, O for all others.
Ryup Rupture distance (km)
V3o Time averaged shear wave velocity in the upper 30 meters (m/s)
Z Depth from the surface to shear wave velocity horizon of at least 1 km/s (km)
I, Peak ground acceleration for the Vg3 = 760 m/s condition (g)
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The model prediction for the EAS (units g-sec) ground motion is given by Equation 2-9:

In EAS =In EAS,eq + €0 2-9)

where o is the total aleatory variability, and the standard-normal random variable € is the number
of standard deviations above or below the median. The median estimate of the EAS (EAS;,04, With

units g-sec) can be calculated from the general equation:

In EASyea = fu+ fo+ fs+ fztor + fam + f21 (2-10)

where each of the model components in Equation 2-10 are described in the following sections.

Magnitude Scaling, fu

To capture the effects of energy radiated at the source, the formulation of the magnitude scaling is
adopted from the Chiou and Youngs (2014) and Chiou and Youngs (2008) GMMs for response
spectra. A polynomial magnitude scaling formulation was tested (e.g. Abrahamson et al., 2014),
and after evaluating the data found that both formulations fit the data well, but the Chiou and
Youngs (2014) formulation would extrapolate more reasonably. Additionally, the Chiou and
Youngs (2014) formulation has undergone several years of testing and refinement and is based on
seismological models for the source FAS (Chiou and Youngs, 2008), which translates directly to

this application. The expression for the magnitude scaling is given by:

fu = ¢+ (M —6) + c3ln (1 + ecnlem=M) (2-11)
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The components of f, are described in Chiou and Youngs (2008). To recap, the formulation
captures approximately linear magnitude scaling at low frequencies (well below the source corner)
and high frequencies (well above the source corner) with a non-linear transition in between, where
the transition shifts to lower frequencies for larger magnitudes. The coefficient ¢; works jointly
with the ¢, and c3 terms to approximately represent the mean spectral shape after correcting for
all other adjustments. The coefficient ¢, is the frequency independent linear M scaling slope for
frequencies well above the theoretical corner frequency. The term with coefficient c3 captures both
the approximately linear scaling of the FAS below the theoretical corner frequency, and the non-
linear transition to that scaling. The coefficient c,, controls the width of the magnitude range over
which the transition between low- and high- frequency linear scaling occurs, and the coefficient
cy 1s the magnitude at the midpoint of this transition. All of the magnitude scaling terms were

determined in the regression.

Path Scaling, fp

Together with the magnitude scaling, the extensively-tested path scaling formulation of Chiou and

Youngs (2014) is utilized:

fr =rc4 ln(Rrup + ¢ cosh(cg max(M — cpyy, 0))) + (—0.5 — ¢,) In(R) + C7Rpyp (2 —12)

where R = / Rmp2 + 502. The components of Equation 2-12 are described in Chiou and Youngs

(2008). To recap, the term with coefficient ¢, captures near-source geometric spreading, which is

magnitude and frequency dependent. The magnitude and frequency dependence on the geometric
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spreading is introduced by adding a term to the rupture distance inside the log-distance term,
expressed by the term with coefficient c5. This additive distance is designed to capture the near-
source amplitude saturation effects of the finite-fault rupture dimension. This term is a frequency-
dependent constant for small magnitudes, and transitions to be proportional to exp(M) for large
magnitudes, with the largest additive distance at high frequencies. Since the hyperbolic cosine is
a monotonically increasing function, the coefficient cs controls the scaling of this term, and

coefficients ¢4 and ¢y, control the gradient.

Since the coefficients cs, ¢4 and ¢y, are multiplied by c,, there is potential for trade-off between
them. The regression procedure is started with the values for coefficients cs, ¢4 and ¢y, from
Chiou and Youngs (2014) to obtain ¢, from the data, ensuring the model did not over-saturate.
Using Equations 2-11 and 2-12, the full saturation condition (no magnitude scaling at zero
distance) leads to the following constraint on the coefficients: ¢, = —c,cq. For ¢, values larger
than the full saturation value, there will be a positive magnitude scaling at zero distance (i.e. not
full saturation). It is reasonable for the EAS to have some scaling at zero distance even though the
PSA is nearly fully saturated at high frequencies. The PSA saturates in part because the procedure
involves selecting the peak response of the oscillator over all time, meaning it is not affected by
duration. Conversely, the EAS is not a peak response operator, and so it will continue to scale for
large magnitudes at short distance due to the longer source durations. This is the contribution of

the lower amplitudes over the duration of the signal.

The near-source saturation of magnitude scaling is checked against the data and against finite-fault
simulations (see Model Summary section of this paper for more details) and the EAS saturation in
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this model does not disagree with those from the simulations. In later stages of the regression, the
coefficients cs, ¢ and cy,, are also determined empirically. The values from the regression do not
change enough to impact the model, so coefficient values are fixed from Chiou and Youngs (2014)
for cs, ¢ and ¢y, 1n the final model. Thus, the coefficients ¢, and c, control the saturation in the

model development.

Following Chiou and Youngs (2014), at large distances, the distance scaling smoothly transitions
to be proportional to R to model surface wave rather than body wave geometric spreading
effects. This effect is introduced with the ln(ﬁ) term, which controls at distances greater than 50
km by subtracting the c, coefficient and imposing a -0.5 slope. Effects of crustal anelastic
attenuation (Q) are captured through the term with the frequency-dependent coefficient c;. The Q

scaling does not require magnitude dependence for the EAS.

Site Response, f¢

The Vg3, (m/s) dependence of site amplification is modeled using the form:

fs = fsr + fr (2 —13a)
B min(Vs30, 1000)
o = o ln (T ) (2 - 13b)
I +
far = len( ng fg) (2-130)
fZ — ﬁl-(efs(min(VSBOrVref)_360) _ efS(Vref_SGO)) (2 — 13d)
In(Iz) = 1.238 + 0.846 In(EAS,¢;(f = 5 Hz)) (2 — 13e)
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where the linear site amplification is given by fs;, and the nonlinear site amplification is given by
fn1, which is the analytical site amplification function for FAS in the western United States (WUS)

modified from Hashash et al. (2018).

The linear site term, fs;, is formulated as a linear function of In(Vy3,) and is centered on the
reference Vg3, of 1000 m/s. The fs; term is determined in the regression analysis. Abrahamson et
al. (2014) observed that at long periods, the scaling of PSA with Vg3, became weaker for higher
Vs30 values, and, therefore, selected a model that does not scale with V3, above some maximum
value, V; = 1000 m/s. Inclusion of this feature is based on evaluation of the data (Figure 2-4),
which implies that above 1000 m/s the correlation between Vg3, and the deeper profile no longer
holds. Below 1000 m/s, the linear site amplification terms approximately scales linearly with
In(Vy30), so the regional linear V,34-based site amplification is modeled with a single frequency-

dependent coefficient, cg.
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Figure 2-4. Vg3 scaling of the linear site amplification terms, at f = 0.2, 0.5, 1, 5, 10, and 20 Hz.

The nonlinear site amplification, fy;, is constrained using a purely analytical model rather than
obtaining it from the data. Empirical evaluations of the nonlinear effects are limited by the

relatively sparse sampling of ground motions expected to be in the nonlinear range in the NGA-
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West2 database (Kamai et al., 2014). Therefore, the Hashash et al. (2018) nonlinear site
amplification term, fy;, is adopted to model nonlinear soil amplification. This model was
developed analytically by performing large-scale 1D site response simulations of input rock
motions propagated through soil columns representative of WUS site conditions. Hashash et al.
(2018) produced linear and nonlinear site amplification models for the PSA and FAS. Equations
2-13c and 2-13d are the nonlinear FAS amplification components of the Hashash et al. (2018)
model developed for the WUS. In these equations, f;, f, and f; are frequency-dependent
coefficients, I is the peak ground acceleration (PGA, in units g) at rock outcrop, and V.. is the
limiting velocity beyond which there is no amplification relative to the reference rock condition,
set to 760 m/s (Hashash et al., 2018). In this model, almost no nonlinearity is applied at frequencies
below 1.0 Hz and the modification approaches zero for small values of the input motion (/) and

as Vg3 approaches Vy.qr.

To ensure smooth spectra in the GMM, a smoothed version of the Hashash et al. (2018) nonlinear
site amplification model is implemented. The smoothing of coefficients f3, f;, and f5 in frequency
space are shown in Figure 2-5. The maximum frequency of the Hashash et al. (2018) model is 13.3
Hz, and the coefficients of the model reduce the nonlinear effect to zero for frequencies greater
than this value simply due to the lack of FAS values at higher frequencies. Physically, this is not
realistic behavior. To include nonlinear effects at the higher frequencies, the Hashash et al. (2018)
model is modified by taking the minimum value of fy; over all frequencies and constrain all higher
frequencies to take the same value. An example of this method (for input values of Vi3, = 300 m/s

and I = 0.8 g) is shown in Figure 2-5.
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To utilize the Hashash et al. (2018) nonlinear model requires the PGA on rock. Since the model is
for the EAS, an estimate of the PGA (in units g) for the reference site condition is developed as a
function of the EAS for the reference site condition at f = 5 Hz (in units g-sec), given by Equation
2-12e. The EAS at f = 5 Hz is used to estimate PGA because this is approximately the
predominant frequency of the ground motions and should correlate strongly with the PGA. In
Figure 2-6, the data used to develop the I, - EAS,.;(f = 5 Hz) relationship are shown. Ground
motions with Iz > 0.01g are included, with symbols identifying data within unit M bins. In Figure
2-6, Iy is corrected to the reference site condition using the Abrahamson et al. (2014) linear site
amplification model, and the EAS is corrected the reference V3, condition using the linear site
amplification model from this study. The least squares fit given by Equation 2-12¢ is shown with
the dashed line. Different M and distance ranges were evaluated similarly, with minimal

differences in the slope of the relationship.
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Figure 2-5. Smoothing of the Hashash et al. (2018) coefficients f3, fa and fs, and the smoothing procedure
of term fy for example values of Vgzo = 300 m/s and Ir = 0.8 g.
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Iz > 0.01g are included, with symbols identifying M bins. Iy is corrected to the reference site
condition using the Abrahamson et al. (2014) linear site amplification model, and the EAS is
corrected the reference V3o condition using the linear site amplification model from this study.

Depth to Top of Rupture Scaling, f 70+

To model differences in the ground motions for surface and buried ruptures, the depth to the top

of rupture scaling model takes the form:
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fztor = Co min (Z¢,,, 20) (2—-14)

where ¢4 1s frequency dependent and Z;,,- is non-negative and measured in km. The Z;,, scaling

is capped at 20 km to prevent unbounded scaling with Z;,,..

Normal Style of Faulting Effects, fnu

To model the differences in ground motions for normal style faults, the normal faulting term is:

fum = c10Fnm (2 —15)

where Fy, 1s 1 for normal style faults and O for all others, and c; is determined in the regression.
A style of faulting term for reverse events was considered but not included, because this term was

highly correlated with Z;,,.. Therefore, the reverse style of faulting scaling is captured in f5:o,-.

Soil Depth Scaling, f 74

To model the scaling with respect to sediment thickness, the Abrahamson et al., (2014) formulation
is adopted, which is parameterized by the depth to shear wave velocity horizon of 1.0 km/s, Z;

(units of km). This model takes the form:

min (Z;,2.0) + 0.01
= Cqq | 2—16
fz1=c11 n< Ziger +0.01 > ( a)
Ci1a forVezo < 200m/s
ci1p  for 200 < Vo < 300m/s (2 — 16b)

- c or < < m/s
T Ve for300 < Vi < 500 m/
Ci1d for Vego > 500m/s
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;o 1 —7.67l Vizo* + 610% (2 — 160)
1Ref = 7000 P\ 72 "™\ 1360% + 610* ¢

where Z; g, is the reference Z; for the regional model for California and Nevada. Equation 2-16¢
was developed by Chiou and Youngs (2014) to account for regional differences in the Vi3 — Z;
relationships in the data. Abrahamson et al., (2014) showed that the Z; scaling is dependent on the
Vs30 value and used the Vg3, bins in Equation 2-16b to model this dependence. The soil depth
scaling is capped to Z; = 2 km based on the range of the data and to avoid unconstrained

extrapolation.
Regression Analysis

The random-effects model is used for the regression analysis following the procedure described
by Abrahamson and Youngs (1992). This procedure leads to the separation of total residuals into
between-event residuals (6B) and within-event residuals (6W), following the notation of Al Atik
et al., (2010). For large numbers of recordings per earthquake, the between-event residual is
approximately the average difference in logarithmic-space between the observed Intensity
Measure (IM) from a specific earthquake and the IM predicted by the GMM. The within-event
residual (6W) is the difference between the IM at a specific site for a given earthquake and the
median IM predicted by the GMM plus §B. By accounting for repeatable site effects, SW can
further be partitioned into a site-to-site residual (6525) and the single-station within-event residual
(WS, also called the within-site residual) (e.g. Villani and Abrahamson, 2015). Using this

notation, the residuals take the following form:
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Y = g(X,5,0) + 6B, + 8S2S, + SWS,q (2-17)

Stotat =Y — g(Xes,0) = 8B, + 85255 + SW S, (2-18)

where Y is the natural log of the recorded ground motion IM, g(X,, ) is the median GMM, X,
is the vector of explanatory seismological parameters (magnitude, distance, site conditions, etc.),

0 is the vector of GMM coefficients, and &;,¢4; 1s the total residual for earthquake e and site s.

The residual components §B, §S2S and WS are well-represented as zero-mean, independent,
normally distributed random variables with standard deviations 7, ¢s,¢ and ¢y, respectively (Al

Atik et al., 2010). The total standard deviation, g, is expressed as:

o= Jrz + Pl + 9% (2-19)

The regression is performed in a series of steps to prevent trade-off of correlated model coefficients
and to constrain different components of the model using the data relevant to each piece. These
steps are given in Table 2-2, along with the data used and parameters determined from each step.
In Step 1-a, a data set consisting of larger magnitudes and shorter distances is used to constrain the
large magnitude scaling and near-source finite-fault saturation, using data from all regions. In
Steps 1-b through 1-d, the same data set is used, and the remaining source effects are determined.
In Step 2, the regionalized linear site amplification parameters are determined using the data from
California and Nevada at distances within 100 km. In Steps 3-a through 3-c, data from California
and Nevada are included out to 300 km distance. In these regression steps, the regional soil depth

scaling, anelastic attenuation, and mean spectral shape coefficients are determined. For all steps
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the regression is performed independently at each of 239 log-spaced frequencies spanning 0.1-24

Hz.

Table 2-2. Regression steps.

Parameters Free in the Parameters
Step Data Used . Smoothed after
Regression .
the Regression
1-a | M>4,R.;, <100km, | cy,cy,C3,Cp,Cuy,CayCy,Cg, Cy, €105 C11 Cy,Cy
all regions (M, path)
1-b Same as 1-a €1, €3, Cn, Cy, €7, Cg, Co, C10, C11 €3, Cpy Cy
(M)
1-¢ Same as 1-a €1, Cs, Cs» Chmo C7, Cg, Co, €10, C11 Cs, C) Chim
(path)
1-d Same as 1-a €1,€7,Cg, Co, C10, C11 Cy
(Ztor)
1-e Same as 1-a €1,€7,Cg, C10, C11 C10
(Fym)
2 M > 4,R,y, < 100 km €1,C7,Cg, C11 Cg
from CA/Nevada (Vs30)
3-a = M>3Ry, <300km €1,C7,C11 C11
(Z1)
from CA/Nevada
3-b Same as 3-a C1,Cy Cy
@
3-c Same as 3-a c1 C1

Smoothing

The model coefficients are smoothed in a series of steps as outlined in Table 2-2. Smoothing of

the coefficients is performed to assure smooth spectra and, in some cases, to constrain the model
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to a more physical behavior where the data are sparse (Abrahamson et al., 2014). Tables of the

values of the final smoothed coefficients are available in Appendix B.

Figure 2-7 through Figure 2-16 show the regressed model coefficients plotted versus frequency,
before and after smoothing. The coefficients ¢, and ¢, are frequency independent and are
determined from regressions in the high frequency range. The coefficients c3, ¢,;, and c,, require
only minor smoothing to assure smooth spectra in the final model, including extrapolation outside
the ranges well constrained by data. The smoothing of ¢, (the anelastic attenuation term) is
constrained to be nonpositive at all frequencies so that the model does not unintentionally increase
in amplitude at very large distances. Minimal smoothing is required for the coefficient cg (the
linear Vg3, term). The coefficient cq (the Z;,, term) takes on negative values at low frequencies
implying small de-amplification of low frequency ground motions with increasing Z;,,. The data
lead to a large drop in ¢, (the normal faulting term) at low frequencies but this is not included in
the model because the theoretical basis is not clear; instead a frequency-independent constant is
used (uniform scaling across frequencies) for normal style-of-faulting earthquakes. The c¢;; terms
are smoothed as shown in Figure 2-14, where the uncertainty is largest for ¢, ;,, which corresponds

to the lowest V3, bin with relatively fewer data.

The c¢; coefficient works collectively with the c; term to represent the mean spectral shape after
correcting for all other adjustments. In the regression, unexpected behavior of ¢; at low frequencies
is observed, as shown in Figure 2-16. At frequencies below about 0.3 Hz, the regressed coefficient
values are equal to or larger than the 0.3 Hz value. If unmodified and combined with the c; term,

this would lead to an irregular spectral “bump” at f < 0.3 Hz. Following Aki (1967) the mean
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spectrum should be approximately linear with a 2-slope in this frequency range. Therefore, the c;
coefficient is modified at low frequencies by constraining the slope from f =~ 1.0 Hz down to 0.1
Hz, as shown in Figure 2-16. The difference between the regressed values of ¢; and the constrained
values of ¢; is denoted ¢, 4; this adjustment coefficient is plotted in the lower portion of Figure 2-
16. By introducing the c¢;, term, the model predicts smooth, theoretically appropriate spectra at
low frequencies. This also allows for residuals which are zero-centered, which is required for
computing the correlations of the residuals between frequencies. To account for this modification,
the ¢y, term must be added to the total standard deviation using Equation 2-21. The standard

deviation model is discussed further below.

This unexpected behavior of ¢; may be due to bias in the data. At low frequencies, the signal to
noise ratio is commonly low (Douglas and Boore, 2011). This contributes to the drop off in data
at low frequencies shown in Figure 2-2. Additionally, at low frequencies, the large epsilon (above
average) ground motions are more likely to be above the signal to noise ratio, and therefore, be
included in the database. Likewise, the below average ground motions are more likely to be below
this ratio and be excluded. The net effect may be that, for the FAS at low frequencies, the database
is biased towards higher ground motions. Observing the data, the mean spectra for certain binned
magnitude and distance ranges contain this feature. As an example, Figure 2-17 shows the
geometric mean spectra of a subset of the data used in the analysis. This figure is created using

recordings from strike-slip earthquakes with R,.,,;, < 50 km, for M bins one unit wide, and adjusted

to the reference Vg3, condition. Below about 0.3 Hz, the bump in the spectral shape in the data that

causes the increase of ¢, is evident, especially for the data with M > 7 and M < 5.
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Other physical explanations of the cause of the increase in coefficient c; are not apparent. To check
that long period basin effects are not the cause, the mean spectra are examined in the same way,
but only including records with Z; < 0.15 km, and the same behavior is observed. To further test
if basin effects are not adequately captured by the model, c; is fixed to the constrained shape and
the residuals are mapped. These residuals do not have regional or spatial trends, implying that
basin effects are not the culprit. Understanding the physical cause of the long-period shape of the

spectrum will be evaluated further in a future study.
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Figure 2-17. The geometric mean EAS spectra of the data used in the analysis, calculated using
recordings from strike-slip earthquakes with Ry, < 50 km, for M bins one unit wide, and

adjusted to the reference Vg3 condition.

Extrapolation to 100 Hz

Model coefficients are obtained by regression for frequencies up to 24 Hz. At high frequencies,
the FAS decays rapidly (Hanks 1982; Anderson and Hough, 1984). Anderson and Hough (1984)

introduced the spectral decay factor kappa (k) to model the rate of the decrease, where the
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amplitude of the log(FAS) decays linearly versus frequency (linear spaced), and k is related to the
slope. The total site amplification is the combined effect of crustal amplification and damping (x
and Q), but the effect of k is so strong that it controls the spectral decay of the FAS at high
frequencies and is the only parameter specified in the extrapolation. The model is extrapolated

using Equation 2-20:

D(k, f) = exp (—mkf) (2 —20a)
In(i) = —0.4 « In (17/5638) ~35 (2 — 20b)
EAS(f > fimax ) = EAS(finax) * D¢, f — finax) (2 —20¢)

where D (k, f) is the Anderson and Hough (1984) diminution operator and f,,,, is the frequency
beyond which the extrapolation occurs; f;,4, = 24 Hz. The parameter k is estimated from Vs,
using the relationship given by Equation 2-20b. This relationship is selected based on the range of
Ko — Vg3 correlation models presented in Figure 2 of Ktenidou et al., (2014). The scatter observed

in these correlations is large, as described in Ktenidou et al., (2014).

Residuals

The model is evaluated by checking the residuals from the regression analysis as functions of the
main model parameters. Example figures are included below, and a larger set of residual figures

are available in Appendix A.

Between-event and Between-site Residuals

Examples of the dependence on the source parameters of the between-event residuals at f = 0.2,

1.0, and 5.0 Hz are given in Figure 2-18 through Figure 2-20. In these figures, the diamond shaped
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markers represent events from California and Nevada, and circles represent events from all other
regions. There is not a strong magnitude dependence of the §B. For Z;,,, there is no trend in the
residuals at high frequencies, where the model increases the ground motion with increasing Z,,-.
There is a potential difference in Z;,, scaling between regions at low to moderate frequencies, an
effect which should be evaluated further in the future. For Fy,,, there is also no trend in the
residuals at high frequencies, but at the lower frequencies, potential regional differences exist. The
normal faulting term is constrained by sparse data (10 events at 0.2 Hz, including 6 from Italy), so
this term is not refined further. Figure 2-18 through Figure 2-20 also show the dependence of the
between-site residuals on Vg3,. Overall, there is no trend in §S2S versus Vg3o. The standard

deviation of these residuals (¢s,) is comparable to T at frequencies greater than about 2 Hz.
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f = 0.2 Hz, = 0.59, bgp = 0.37
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Figure 2-18. Between-event residuals (0B,) versus M, Z;,,, and Fyy and between-site residuals (652S;)
versus Vg, for f = 0.2 Hz.
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f = 1.0 Hz, 7 = 0.53, bgpg = 0.41
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Figure 2-19. Between-event residuals (0B,) versus M, Z;,,, and Fyy and between-site residuals (652S;)
versus Vg, for f = 1 Hz.
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f = 5.0 Hz, 7 = 0.38, bgpg = 0.40
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Figure 2-20. Between-event residuals (0B,) versus M, Z;,,, and Fyy and between-site residuals (652S;)
versus Vgzo, f = 5 Hz.
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Within-site Residuals

Examples of the dependence on the model parameters of the within-site residuals at f = 0.2, 1.0,
and 5.0 Hz are given in Figure 2-21 through Figure 2-23. The filled circles are individual residuals,
and the black diamonds with whiskers represent the mean and 95% confidence interval of the mean
for binned ranges of the model parameter. Overall, there is no trend observed in SWS versus
moment magnitude. The linear site response model is evaluated through the Vi3, and Z;
dependence of the residuals. Overall, no strong trends are observed against Vg3,, except for the
highest V3, values at low frequencies, where the residuals are slightly positive, indicating model
under-prediction. The data are very sparse in this range (6 records with Vg3, >1500 m/s and 106

records with Vg3, >1200 m/s). No strong Z; dependencies on the residuals are observed.

The distance scaling of the model is evaluated using the distance-dependence of §WS as shown in
Figure 2-21 through Figure 2-23. Additionally, the distance dependence is evaluated using
magnitude binned residuals. Examples of the distance dependence binned by magnitude are shown
in Figure 2-24 through Figure 2-26, where the magnitude bin ranges are given in the figure legends.
In the distance range of about 5 — 100 km, there are no strong trends or biases of the residuals. At
low frequencies, for distances beyond 100 km and in the M5.5-6.5 bin, the WS residuals are
biased positive. This is likely due to the relatively limited data within this bin, and that the model
scaling is appropriate even though these particular residuals are not zero-centered. Thus, neither
the magnitude nor distance scaling are adjusted to center these residuals. At distances shorter than
1 km and for frequencies greater than about 2 Hz, there is a small systematic negative bias in the
residuals (Figure 2-23). This means the near-fault saturation in this model is not as strong as
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indicated by the data. Graizer (2018) chose to incorporate oversaturation (a peak in the distance
scaling at about 5 km) into his ground motion models. The oversaturation of distance scaling is
intentionally avoided in this model. Because the available ground-motion data is extremely sparse
at such close distances, this model is compared with the saturation from finite-fault earthquake
simulations (see Model Summary section of this paper for more details). Based on these results,

and on the sparsity of the data, the small bias in the short-distance residuals is accepted.

The distance dependence of the model is also compared with data from four well-recorded WUS
earthquakes in Figure 2-27 through Figure 2-30: 1989 M6.9 Loma Prieta, 2010 M7.2 El Mayor-
Cucapah, 1992 M7.3 Landers, and 1994 M6.7 Northridge. In these figures, the top panels compare
the recorded EAS with the model-predicted EAS at each site, including the event term for that
earthquake. The lower panels show the within-event residuals for the same sites versus R,,.
Residuals for El Mayor-Cucapah, the most well-recorded large earthquake in California, show no
bias or trend at either frequency. Besides a few outliers, the remaining three events have

attenuation which does not disagree with the median model and is captured on average.

60



_,,
[
e
N
I
N
<
[

= 0.42

2 ) o N
o
3 O o O 2 5 ooo @8C80 o)
2" 0o : Pt
o o
% Co 3% go g8 o~° @
, o 9 o i s

Figure 2-21. Within-site residuals (5WS,s) versus M, Ry, V3o, and Zy for f = 0.2 Hz.
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Figure 2-22. Within-site residuals (§W S,s) versus M, Ryyyp, V3o, and Zy for f = 1 Hz.
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Figure 2-23. Within-site residuals (§W S,s) versus M, Ryyyp, V3o, and Zy for f = 5 Hz.
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Figure 2-24. Within-site residuals (§WS,g) versus Ryyyp, binned by M for f = 0.2 Hz.
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Figure 2-26. Within-site residuals (§WS,g) versus Ryyyp, binned by M for f = 5 Hz.
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Figure 2-27. Comparison of the model distance attenuation with the M6.93 Loma Prieta data for f = 0.5
Hz (left) and 5 Hz (right).
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Figure 2-28. Comparison of the model distance attenuation with the M7.2 El Mayor-Cucapah data for f =
0.5 Hz (left) and 5 Hz (right).
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Figure 2-29. Comparison of the model distance attenuation with the M7.28 Landers data for f = 0.5 Hz
(left) and 5 Hz (right).
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Figure 2-30. Comparison of the model distance attenuation with the M6.69 Northridge data for f = 0.5
Hz (left) and 5 Hz (right).
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Model Summary

Median Model

In this section, the median model behavior is summarized. In Figure 2-31, the median EAS spectra
from this model (solid lines) are compared with spectra from the additive double-corner-frequency
source spectral model (dashed lines) described in Boore et al., (2014). The double-corner-
frequency spectra are computed using typical parameters for the WUS given by Boore (2003),
including shear-wave velocity = 3.5 km/s, density = 2.72 gm/cm?, stress parameter Ag = 50 bars,
Kk = 0.025 sec, the Boore and Thompson (2015) finite fault distance adjustment, the Boore and
Thompson (2014) path duration for western North America, and the Boore (2016) crustal
amplification model. The point-source spectral models are calculated using the software package
SMSIM (Boore, 2005). The median model spectra are computed for a strike-slip scenario at
Ryyp = 30 km, with Z;,,. = 0 km, and with the reference V3, and Z; conditions. Figure 2-31
shows overall good agreement between the median model and the additive double-corner-
frequency source spectral model with typical WUS parameters, including a well-defined decrease
in corner frequency with increasing M. At frequencies well below the corner frequency, the spectra
should be directly proportional to seismic moment (M), and since M, = 10%-5M~16.05 the spectra
in this range should scale by 10> ~ 31.6 for one magnitude unit. This approximate scaling is
evident in Figure 2-31. At frequencies between 10 — 30 Hz, there is a dip in the model spectra
compared with the point source spectra. This may be related to the region-specific attenuation
parameters (geometric spreading and Q), where the point source spectra use generalized models

for these attenuation parameters. The k-based extrapolation in the model spectra begins at 24 Hz.
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In Figure 2-32, the median EAS spectra from this model are shown for a set of scenarios. Panels

(a) and (b) show the spectra for a vertical strike slip scenario at R, = 30 km with V3, = 1000

and 500 m/s, respectively. In (c) and (d) are the spectra for the same Vg3, but at R,.,,, = 1 km.

In Figure 2-33, the distance scaling of the median model is shown for f = 0.2, 1, 5, and 20 Hz.
All spectra in this figure are from a strike-slip earthquake rupturing the ground surface with
reference Vy3¢ and Z; conditions. The distance scaling is compared with the Chiou and Youngs

(2014) model for PSA (dashed lines) by scaling the PSA values to the R,,;, = 0.1 km EAS values.

At 0.2 Hz, where the Q term coefficient (c;) is very small, the distance scaling is controlled by the
geometric spreading terms, which includes a transition to R scaling to model surface wave
geometric spreading at larger distances. At increasing frequencies, the effect of the Q term
becomes more pronounced. In Figure 2-33(d), the distance scaling is shown to deviate significantly
from the Chiou and Youngs (2014) model, which has a magnitude dependence on Q. This
difference can be explained by the differences between EAS and PSA. At high frequencies, the
PSA is strongly influenced by the predominant ground-motion frequency, as discussed above.
Because of this, the PSA scaling at 20 Hz and 5 Hz are similar, but since the EAS at 20 Hz is
directly representative of the ground motions in that frequency range, the distance scaling is much

stronger for 20H than for 5 Hz.

The M scaling of the median EAS is shown in Figure 2-34 for a strike-slip surface rupturing

scenario with reference V3, and Z; conditions, for f = 0.2, 1, 5, and 20 Hz. In Figure 2-35 through
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Figure 2-37, the median M scaling is compared with that from a set of broadband finite-fault
simulations. The simulations were performed on the SCEC Broadband Platform, (Maechling et
al., 2015) version 17.3, using simulation methods Graves and Pitarka (2015, also known as GP)
and Atkinson and Assatourians (2015, also known as EXSIM). Both simulation methods were
used to develop broadband time histories for vertical strike slip scenarios with a range of M from
M6.5 to 8 and with stations arranged on constant R,.,;,, bands. In these figures, the M scaling is
shown for R,,;, = 3, 10, 20, and 30 km for the median EAS model, the GP simulations, the EXSIM
simulations, and for the Chiou and Youngs (2014; CY 14 hereafter) model for PSA. For the CY 14
PSA, the amplitudes are scaled to the EAS model values at M6.5 for this comparison. The symbols
identified in the legend represent the mean simulated EAS over all stations on a given R, band,

and the standard error of the mean.

The simulations are used to evaluate the near-source saturation of the M scaling and to compare
with the scaling implied by the data. Overall, there is less saturation in this GMM than there is in
CY 14 at all frequencies. At very close distances, there is stronger high-frequency saturation in
EXSIM than in GP. Interestingly, this relationship is inverted at low frequencies. Based on these
and other comparisons, it is determined the EAS saturation in this model is not inconsistent with
the saturation from the simulations. The EAS should have some scaling at zero distance even
though the PSA is nearly fully saturated at high frequencies because the PSA procedure involves
selecting the peak response of the oscillator over all time, meaning it is not affected by duration.
Conversely, the EAS will continue to scale for large magnitudes at short distance due to the longer

source durations.
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The site response scaling of the median model is summarized for a set of example scenarios in
Figure 2-38. Panel (a) shows the V3, scaling of the median model for a M7 strike-slip earthquake
rupturing the surface with reference Z; conditions at R,,;, = 30 km. The solid lines represent the
total (linear and nonlinear) Vg3, scaling and the dashed lines represent only the linear portion of
the Vg3, scaling. Panel (b) shows the Z; scaling of the median model for the same scenario with
Vs30 = 300 m/s. Panel (c) shows the scaling of the modified Hashash et al. (2018) nonlinear site
term with M, for a scenario with R, = 30 km and V3, = 300 m/s. Similarly, panel (d) shows
the scaling of the modified Hashash et al. (2018) nonlinear site term with R,.,.,,, for a scenario with

M7 and Vi3 = 300 m/s.
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Figure 2-31. Median model spectra for a strike-slip scenario at Ryyy, = 30 km, with Zio = 0 km, and with
the reference Vg3o and Z; conditions (solid lines) compared with the additive double-corner
frequency source spectral model with typical WUS parameters (dashed lines).
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Figure 2-32. Median model EAS spectra for a set of scenarios described by the parameters in each title
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Figure 2-35. M scaling of the median model for four distances, at f = 0.5 Hz for a strike-slip earthquake
rupturing the surface with reference Vs3¢ and Z, conditions, compared with results from finite-
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Figure 2-36. M scaling of the median model for four distances, at f = 1 Hz for a strike-slip earthquake
rupturing the surface with reference Vg3 and Z1 conditions, compared with results from finite-

fault simulations.
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Figure 2-37. M scaling of the median model for four distances, at f = 5 Hz for a strike-slip earthquake
rupturing the surface with reference Vs3¢ and Z, conditions, compared with results from finite-
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Figure 2-38. (a) Vs39 scaling of the median model for a M7 strike-slip earthquake rupturing the surface

with reference Zy conditions at Ryyy, = 30 km. The solid lines represent the total (linear and

nonlinear) V3o scaling and the dashed lines represent only the linear portion of the Vg3
scaling. (b) Z, scaling of the median model for the same scenario with Vg39 = 300 m/s. (c)
scaling of the modified Hashash et al. (2018) nonlinear site term with M, for Ry, = 30 km
and Vg3 = 300 m/s. (d) scaling of the modified Hashash et al. (2018) nonlinear site term with
Ryup, for M7 and Vsz3o = 300 m/s.
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Standard Deviation Model

Prediction of the EAS (Equation 2-9) requires a model for the aleatory variability. The random-
effects method employed leads to the separation of total residuals into between-event residuals
(6B) site-to-site residuals (§52S) and single-station within-event residuals (6WS), which have
variance components 72, ¢2,, and ¢Z, respectively. The total standard deviation model (natural

logarithm units) is given by Equation 2-21.

U=JT2+¢5225+¢525+C12¢1 (2-21)

Where ¢, is the spectral shape adjustment coefficient (Figure 2-16) which has been added to the
total standard deviation, as described previously. Figure 2-39 shows the standard deviations for
each component of Equation 2-21a, as calculated directly from the regression analysis (all
magnitudes). The increase observed in T at frequencies greater than about 3 Hz is consistent with
the behavior of response spectrum models (e.g. Abrahamson et al., 2014, Chiou and Youngs,
2014). This is believed to be the effect of x, which is related to regional crustal damping, being
mapped into the between-event terms. For a given earthquake, recordings in close proximity to the
source will have similar k, and the high frequencies of these recordings may be systematically
above or below average. If there is a regional difference in kappa, then the regression treats this as
an event-specific variation, which artificially increases t. Stafford (2017) also observed an increase
in the variance components of the FAS with increasing frequency and hypothesized that the

increase of ¢s, ¢ reflects variations in k across different sites.
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Figure 2-39. Standard deviation components calculated directly from the regression analysis, for all
magnitudes.

The magnitude dependence of each aleatory term is fit as shown in Figure 2-40 and is given by
Equations 22a-c. At low frequencies, the small-magnitude data have higher between-event
standard deviation. This is also consistent with the Abrahamson et al., (2014) response spectrum
model, and could be related to the steeper magnitude scaling slope at low magnitudes and the
uncertainty in small-magnitude source measurements (Abrahamson et al., 2014). The standard
deviations of the two within-event residuals do not have strong magnitude dependence at low
frequencies. At higher frequencies, T does not show strong magnitude dependence, but ¢s,s and
¢ss are larger for the small-magnitude data, which is again consistent with the Abrahamson et al.,

(2014) and Chiou and Youngs, (2014) models. Higher within-event variability for small
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magnitudes may be related to the increased effect of the high-frequency radiation pattern, which

is reduced for larger magnitude events due to destructive interference (Abrahamson et al., 2014).
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Figure 2-40. Magnitude scaling of the standard deviation terms for f = 1 and 5 Hz.
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S1 for M < 4.0

S, — S
T={s + 22 (M —-4) for40<M<60 (2 = 22q)
S, for M > 6.0
S3 for M < 4.0
Sp— S
Psas =4 55+ 42 S(M—-4) for40<M<6.0 (2 = 22b)
Sy for M > 5.5
Sg for M < 4.0
S¢g — S
Pes =4 55 + 62 S(M—4) for40<M<6.0 (2 — 22¢)
Se for M > 6.0

At frequencies above approximately 20 Hz, the model is constrained to smoothly transition to be
flat in frequency space for all components of o. The frequency dependence of the standard
deviation model is shown in Figure 2-41, and examples of the total standard deviation model for a
set of scenarios are shown in Figure 2-42. Coefficients s; through s, are given in Appendix B. In
Figure 2-43, the components of the standard deviation model are compared with those from Bora
etal., (2015) and Stafford (2017). The Bora et al., (2015) model was developed for smoothed FAS
from data in Europe, the Mediterranean, and the Middle-East and the Stafford (2017) model was

developed for unsmoothed FAS from a subset of the NGA-West1 database (Chiou et al., 2008).
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Figure 2-41. Frequency dependence of the standard deviation model.
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Figure 2-43. Comparison of the standard deviation components between the Bora et al., (2015), Stafford
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comparison of T, Psas, Pss, and o, respectively.
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The standard deviation model developed here is linear, meaning it does not account for the effects
of nonlinear site response. As discussed in Al Atik and Abrahamson (2010) and Abrahamson et
al., (2014), the nonlinear effects on the standard deviation are influenced by the variability of the
rock motion, leading to a reduction in the soil motion variability at high frequencies. In
Abrahamson et al., (2014), the standard deviation of the rock motion is estimated by removing the
site amplification variability (determined analytically) from the surface motion, and the variability
of the soil motion is computed using propagation of errors. In a future update of the model, similar

steps will be taken to account for the effects of nonlinear site response on the standard deviation.

Range of Applicability

The model is applicable for shallow crustal earthquakes in California and Nevada. The model is
developed using a database dominated by California earthquakes, but uses data worldwide to
constrain the magnitude scaling and geometric spreading. The model is applicable for rupture
distances of 0 — 300 km, M 3.0 — 8.0, and over the frequency range 0.1 — 100 Hz. The V3, range
of applicability is 180 — 1500 m/s, although the model is not well constrained for V3, values
greater than 1000 m/s. Models for the median and the aleatory variability of the EAS are developed.
Regional models for Japan and Taiwan will be developed in a future update of the model. A model

for the inter-frequency correlation of €z 45 1s presented in Chapter 3.

Limitations and Future Considerations

The model presented uses the ergodic assumption, as introduced by Anderson and Brune (1999).

This means that the variability in the data from a broad geographic region (in this case, globally
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for the magnitude scaling and geometric spreading, and over the California and Nevada for the
remaining parameters) are assumed to represent the variability of the ground motions over time
for a given site in the target region. With this approach, the model is expected to be appropriate
for general use in California and Nevada but will be biased for a particular site. In an ergodic
model, systematic site, path, and source effects are the dominant parts of the aleatory variability,
making fully or partially non-ergodic models attractive (Abrahamson, 2017). Developing a
partially non-ergodic model requires repeated observations of source, path, or site effects. For
example, in this model, with multiple recordings at a site, the median site-specific amplification
for the site is separated and the intra-event residual is partitioned, shifting that component of
aleatory variability into an epistemic uncertainty (Walling, 2009). To get a fully non-ergodic
model, all of the components of the total ground-motion variability that are not representative of
the variability of future observations of ground motion at a single site must be removed

(Abrahamson and Hollenback, 2012).

Incorporating regional differences into a GMM is a first step towards a partially non-ergodic
assumption (Kuehn and Scherbaum, 2016). To account for the known differences in regional
crustal structure, regionalized models for Japan and Taiwan can be developed in a future model
update. This will involve regionalizing the linear Vg3, scaling (cg), soil depth scaling (c;4),

anelastic attenuation (c;) and spectral shape (c;) coefficients.

At frequencies above 24 Hz, this model uses a k-based extrapolation. This approach required

selecting a K — V3, relationship from the literature. Future improvements to the model may

88



include explicit data regression at higher frequencies, developing a region-specific k — V3,

relationship, or calculating one directly from the database used.

The effects of rupture directivity and hanging-wall scaling are not explicitly included in the model.
Therefore, these effects are accounted for in the total aleatory variability. The hanging-wall effect,
characterized by increased ground motion amplitudes on the hanging-wall side of dipping ruptures,
is not well constrained by the data. For NGA-West2, Donahue and Abrahamson (2013)
investigated these effects for response spectra using finite-fault simulations, and the results were
incorporated in the Abrahamson et al., (2014) model. In a future update, a similar study for the
EAS could be incorporated into this model. The effects of rupture directivity on the EAS is also a
potential future research topic. Finally, the effects of nonlinear site response on the standard

deviation are not accounted for in this model, which can be addressed in a future update.
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Chapter 3:
An empirical model for the inter-frequency correlation of

epsilon for Fourier amplitude spectra
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Abstract

An empirical ground motion model (GMM) for the inter-frequency correlation of epsilon (p,) for
smoothed Fourier amplitude spectra (FAS) is presented. This model is developed for the smoothed
effective amplitude spectrum (EAS), as defined by PEER (Goulet et al., 2018). The EAS is the
orientation-independent horizontal component FAS of ground acceleration. Ground-motion data
are from the Pacific Earthquake Engineering Research Center (PEER) Next Generation
Attenuation-West 2 (NGA-West2) database (Ancheta et al., 2014), which includes shallow crustal
earthquakes in active tectonic regions. The normalized residuals (€) are obtained from the Bayless
and Abrahamson (2018a) GMM, are partitioned into between-event, between-site, and within-site
components, and a model is developed for the total correlation between frequencies. The total
correlation model features a two-term exponential decay with the natural logarithm of frequency.
At higher frequencies, the model differs substantially from previously published models, where
the ground-motion smoothing technique employed has a large effect on the resulting correlations.
The empirical p. are not found to have statistically significant magnitude, distance, site parameter,
or regional dependence. The model is applicable for crustal earthquakes in active tectonic regions
worldwide, for rupture distances of 0 — 300 km, M 3.0 — 8.0, and over the frequency range 0.1 —
24 Hz. Tables for the total correlation model coefficients and covariance matrices are provided in

the electronic supplement to this dissertation.
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Introduction

Residuals from empirical ground-motion models (GMMs, also known as ground-motion
prediction equations, GMPEs) are typically partitioned into between-event residual (6B), and
within-event residuals (§W), following the notation of Al Atik et al., (2010). For large number of
recordings per earthquake, the between-event residual is approximately the average difference
between the observed Intensity Measure (IM) from a specific earthquake and the IM predicted by
the GMM. The within-event residual (6W) is the difference between the IM at a specific site for a
given earthquake and the median IM predicted by the GMM plus §B. By accounting for repeatable
site effects, SW can further be partitioned into a site-to-site residual (§52S5) and the single-station
within-event residual (§WS; also called the within-site residual) (e.g. Villani and Abrahamson,

2015). Using this notation, the residuals take the following form:

Yos = (X5, 0) + 6B, + 65255 + SW S, B3-1)

5total,es = Yes — g(Xes: 0) = 0B, + 6528 + WS 3-2)

where Y, is the natural logarithm of the recorded ground motion IM for earthquake e and site s,
g (X5, 0) is the median GMM, X, is the vector of explanatory seismological parameters
(magnitude, distance, site conditions, etc.), 8 is the vector of GMM coefficients, and G;p¢q es 1S

the total residual.

The residual components 6B, §S2B and 6WS are well-represented as zero-mean, independent,
normally distributed random variables with standard deviations 7, ¢s,¢ and ¢y, respectively (Al

Atik et al., 2010). GMM residual components are converted to epsilon (€g, €55, and €,,5) by
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normalizing the residuals by their respective standard deviations. Because of the normalization,
the random variables €5, €5,5, and €, 5 are represented by standard-normal distributions (mean=0,
variance=1). If the total residual is used, then the resulting €;,¢,; Will, in general, not have zero

mean due to the uneven sampling of recordings per earthquake in the data set.

For a given recording, the values of € at neighboring periods (T) are generally correlated. For
example, if a ground motion is stronger than average at T=1.0 s, then it is likely to also be stronger
than expected at nearby periods, e.g. T=0.8 s or T=1.2 s; however, for a widely-spaced period pair
(e.g. T=10.0 s compared with T=1.0 s), the € values will be weakly correlated. The inter-period
(or equivalently, inter-frequency) correlation coefficient, p, quantifies the relationship of € values

between periods for a given recording.

An empirical GMM is presented for the inter-frequency correlation of epsilon (p.) for smoothed
Fourier amplitude spectra (FAS). The correlation model is based on recordings from the Pacific
Earthquake Engineering Research Center (PEER) Next Generation Attenuation-West 2 (NGA-
West2) database (Ancheta et al., 2014), which includes shallow crustal earthquakes in active
tectonic regions. The normalized residuals (€) are obtained from the GMM described in Chapter
2. Rather than the traditionally used response spectrum, the GMM from Chapter 2 is developed
for the median and variance of the smoothed effective amplitude spectrum (EAS), as defined by
PEER (PEER, 2015). The EAS is the orientation-independent horizontal component FAS of

ground acceleration, described below.
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Chapter Organization

In this chapter, the correlation of epsilon is briefly reviewed, the ground motion intensity measure
(IM) used is described, the reasoning behind selecting Fourier amplitudes as the IM is given, the
development of the correlation model and the sensitivity of the correlation to database subsets is

described, and the model is compared with other published correlation models.

Review of the Correlation of €

The correlation coefficient of two random variables is a measure of their linear dependence. In this
case, € calculated from a large set of ground motions at different frequencies (f) are random
variates. The correlation coefficient between €(f;) and €(f,) can be estimated using a maximum
likelihood estimator, the Pearson-product-moment correlation coefficient, p (Fisher, 1958). The

correlation coefficient for a sample of € at frequencies f; and f, is given by Equation 3-3:

cov(e(f). e(f3)) _ (e(f) — e()(e(r) — e(f)
PR s () — ) (Sa(ei) - €0)°

(3-3)

Pe(r)e(fz) =

where cov is the covariance, o is the standard deviation, n is the total number of observations, i is

the i" observation of €, and €(f;) and €(f,) are the sample means of € at frequencies f; and f5,
respectively. In our applications, € is equal to zero, indicating that the GMM is unbiased. The

relation for p(f,y e(r,) given in Equation 3-3 is reciprocal; the correlation coefficient between two

given frequencies is the same regardless of which frequency is the conditioning frequency.
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The total residuals are correlated for a single earthquake, and this effect is removed by separating
the residual components. To account for all residual terms, the total correlation is calculated as
Equation 3-4:

Protar (f1, f2) =
ps(f1, £)T(F)T(2) + ps2s(fi 2) Psas (1) Ps2s(F2) + pws (1 [2)Dss (F1) Pss (f2)

a(fi)o(f2)

B3-4)

where pg (fi, f>) is the correlation of the normalized between-event residuals, pg,s(fi, f>) is the
correlation of the normalized site-to-site residuals, py,s(fi, f>) is the correlation of the normalized
single-station within-event residuals, and o is the total standard deviation. Confidence bounds on
p are based on a variance stabilizing transformation of of p, given in Equation 3-5 (Kutner et al.,
2004). The variance z is given by Equation 3-6, assuming that n is large enough so that z has an
approximately normal distribution. The convergence of z to a normal distribution is very rapid as

n increases (Bradley, 2011).

1+p) (3-5)

1
z = tanh™1(p) = Eln (1 —

Var(z) = n_i3 (3—-6)

Using a database of partitioned residuals, the calculation of p¢(f,)¢(r,) can be repeated for every

frequency pair of interest. Figure 3-1 shows a graphical representation of this step at three example
frequency pairs. The resulting correlation coefficients for each pair of frequencies can be saved as
tables (e.g. Abrahamson et al., 2014; Al Atik, 2011; Akkar et al., 2014; Azarbakht et al., 2014;

Jayaram et al., 2011), or can be empirically modeled. For modern GMMs, models of the correlation
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of € are commonly created for the acceleration response spectrum (PSA; e.g. Baker and Cornell,
2006; Baker and Bradley, 2017; Baker and Jayaram, 2008; Cimellaro 2013; Goda and Atkinson,
2009; Abrahamson et al., 2014). Recently, Stafford (2017) developed a correlation model for €
from FAS. This model, and the development methodology, is summarized and compared with the

developed model in the Model Comparison section.

The physical meaning of p. and its relevance for structural response is described in Chapter 4. In
summary, the parameter € is an indicator of the peaks and troughs at a given frequency in a
spectrum, and p. characterizes the relative width of these extrema. The width of peaks and troughs
in ground-motion spectra have relevance in risk because the variability in the dynamic structural

response can be under-estimated if the correlation in simulated ground motions is too low.

« Values from FAS of NGA-W2 ¢ Values from FAS of NGA-W2 < Values from FAS of NGA-W2

€(5.01 Hz)
o

€(0.30 Hz)
o

€(0.20 Hz)
=)

€(0.20 Hz) €(0.20 Hz) €(0.20 Hz)

Figure 3-1. € values at pairs of frequencies, exhibiting the correlation dependent on frequency spacing.
Left: f = 0.2 Hz and f, = 5.0 Hz. Middle: f; = 0.2 Hz and f, = 0.3 Hz. Right: f; = 0.2 Hz and
fz = 02 Hz
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EAS Ground Motion Intensity Measure

The EAS is defined in Goulet et al., (2018) and is calculated for an orthogonal pair of FAS using

Equation 3-7:

EAS(f) = \/% [FASuc1(f)? + FASyc2(f)?] B3-7)

where FASy, and FASy, are the FAS of the two orthogonal horizontal components of a three
component time series, and f is the frequency in Hz. The EAS is independent of the orientation of
the instrument, and in this way, is compatible with the input required to use random vibration
theory to compute the orientation-independent PSA from the FAS (Goulet et al., 2015). The EAS
i1s smoothed using the logio-scale Konno and Ohmachi (1998) smoothing window, which has
weights and window parameter values described in Kottke et al., (2018). The smoothing of the
EAS has a direct impact on p.. By using the smoothed EAS, consistency is maintained with the
PEER database and with other PEER projects, including the NGA-East empirical FAS models
(Goulet et al., 2018) and the EAS model described in Chapter 2. The EAS are processed by PEER

following the procedure of Kishida et al., (2016).

The correlation model developed here is based on the residuals and variance for the GMM
described in Chapter 2, therefore, the correlation model is for the inter-frequency correlation of
epsilon for the smoothed EAS (p¢ gas). For notational brevity, the EAS subscript is dropped

hereafter and is implied unless noted otherwise. Similarly, if not stated explicitly, the term ‘inter-
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frequency’ is implied in all uses of the word ‘correlation’ in this chapter, as this is the only type of

correlation evaluated.

On the Selection of Fourier Amplitudes

In seismic hazard and earthquake engineering applications, the pseudo-spectral acceleration of a
5% damped single degree of freedom oscillator (also referred to as an acceleration response
spectrum, or PSA) is a commonly used IM. PSA is useful for many applications; however, it has
drawbacks. The FAS is a more direct representation of the frequency content of the ground motions
than PSA and is better understood by seismologists. This leads to several advantages, both in the

empirical modeling and in forward application.

Chapter 2 illustrates that oscillators with different natural frequencies are controlled by different
frequency ranges of the ground motion. At relatively higher oscillator frequencies, where there is
little energy left to resonate the oscillator, the PSA ordinates are dominated by a wide frequency
band of the ground motion that ultimately equals the integration over the entire spectrum of the
input ground motion (Bora at al., 2016). The short-period PSA is then controlled by the dominant
period of the input ground motion, rather than the natural period of the oscillator. Therefore, as

recognized by Carlton and Abrahamson (2014), at periods smaller than the peak period (T}), the
€psa values will be more correlated with the €p54 values of T, than for other periods with similar

spacing. This effect can be observed as the reversal and increase in the Baker and Jayaram (2008)
PSA correlation coefficients at short periods, which is discussed further in the section titled Model

Comparison.
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In summary, PSA provides the spectrum of peak response from a SDOF system, which is
influenced by a range of frequencies, and the breadth of that range is dependent on the oscillator
period. The FAS provides a more direct representation of the frequency content of the ground
motions, and because the Fourier transform is a linear operation, the FAS is a more straightforward
representation of the ground motion. Additionally, using FAS more easily facilitates future
calibration of the inter-frequency correlation of ground-motion simulation methods (e.g. Chapters

3 and 4) because there is not a reversal of the correlation coefficients at high frequencies.

Inter-Frequency Correlation Model

The subset of the NGA-West2 ground-motion database used to develop the model is described in
Chapter 2; the data used is dominated by California earthquakes, but takes advantage of crustal
earthquake data worldwide to constrain the magnitude scaling and geometric spreading.
Additionally, a broader subset of data is used for testing regional variations of the correlation, as
described further in the section titled Dependence of the Correlation on Data Subsets. The
partitioned EAS residuals are used over the empirical frequency range of the EAS model; 0.1-24
Hz. The database accounts for the usable frequency range limitations of each record, and for each
frequency pair, the records are only utilized in the correlation calculation if both frequencies fall
within the usable range. The contour plot shown in Figure 3-2 displays the amount of records (i.e.

€’s) used at each pair of regression frequencies.
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Figure 3-2. Number of recordings (€) used at each pair of frequencies for the correlation calculations,
(left) the between-event component, (middle) the between-site component, (vight) the within-
site component.
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Figure 3-3. Standard deviation components of the Bayless and Abrahamson (2018a) EAS GMM.

To begin, the correlation coefficient, p., is calculated for each of the normalized residual
components (€g, €5, and €,5) at each pair of modeled frequencies. The total correlation (Equation
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3-4) is calculated using p, of each residual component and with the component standard deviations
shown in Figure 3-3. Figure 3-3 shows that the between-event residual standard deviation (7) is
larger than the other to standard deviation components at frequencies below 1 Hz, and above 1 Hz,
the values of all three components are comparable. As a result, the between-event correlation
contributes significantly to the total correlation (Equation 3-4). This is different from response
spectra, where the within-event standard deviation is often significantly larger than the between-
event standard deviation, so the total correlations mostly reflect the within-event correlations
(Stafford, 2017). The resulting correlations are presented as contours in Figure 3-4. These figures
are symmetric about the 1:1 line because correlation coefficient between two frequencies is the
same regardless of which frequency is the conditioning frequency. The four correlation coefficient

matrices shown in Figure 3-4 are provided in the electronic supplement to this article.

To help visualize these results, Figure 3-5 deconstructs the p, contours from Figure 3-4 into five
cross-sections at conditioning frequencies: 0.2, 0.5, 2, 5, and 15 Hz. In this figure, the solid lines
are the p. cross-sections and the dashed lines represent the 95% confidence interval of p. (Kutner

et al., 2004).
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Figure 3-4. Empirical p. contours, showing (a) the between-event component, (b) the between-site
component, (c) the within-site component, and (d) the total.
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Figure 3-5. Empirical p. cross-sections versus frequency at conditioning frequencies 0.2, 0.5, 2, 5, and 15
Hz (solid lines), with 95% confidence bounds on p (dashed lines), for (a) the between-event

component, (b) the between-site component, (c) the within-site component, and (d) the total
correlation.
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Between-event empirical correlation

The between-event empirical p. cross-sections are displayed in Figure 3-5a. Of the residual
components, the confidence intervals on these correlation coefficients are the widest because there
are the fewest samples of the between-event terms (earthquakes) for calculating p.. Figure 3-5a
shows that the between-event p, contributes significantly to the p, ;4¢4; and that some frequency
dependence exists. The between-event p. physically relates to source effects (e.g. stress drop)
which drive ground motions over a broad frequency range and thus lead to relatively broad inter-

frequency pe.

Stafford (2017) observed minor magnitude dependence of the between-event empirical p., and
attributed these to the variations in the source corner frequency for events of the same magnitude,
concluding that larger magnitude events should exhibit stronger inter-frequency correlations over
a broader range of frequencies than smaller magnitude events. The p. model developed here does
not depend on magnitude; the reasoning behind this decision is described in the section titled

Dependence of the Correlation on Data Subsets.

Between-site empirical correlation

The between-site residual represents the systematic deviation of the observed amplification at a
site from the median amplification predicted by the model using a V3,-based site classification
(Al Atik et al., 2010). Therefore, the between-site p. represents the inter-frequency correlation of
the systematic site amplification deviations. The between-site empirical p. cross-sections are

displayed in Figure 3-5b. These correlations are generally not as strong as the between-event
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empirical p., but still contribute significantly to the total correlation. The shape of the p. cross-
sections does not vary strongly with conditioning frequency, especially below 5 Hz. At frequencies

above 5 Hz, the p, cross-sections broaden mildly.

Within-site empirical correlation

The within-site residual component represents the remaining residual after partitioning the random
effects for the event and the site. The within-site empirical p. cross-sections are shown in Figure
3-5c. The confidence intervals on these correlation coefficients are close-fitting because there are
many samples of the within-site residuals for calculating p.. The within-site p. cross-sections are
characterized by a steep decay at frequencies very close to the conditioning frequency, followed
by a relatively flat slope at frequencies farther away from the conditioning frequency. In general,
the strength of the within-site component inter-frequency correlations are substantially lower than

the other residual components.

Total correlation model

The total inter-frequency p, cross-sections, calculated using Equation 3-4, are shown in Figure 3-
5d. Some frequency dependence is observed; if the correlation were independent of the
conditioning frequency, all the contour lines on Figure 3-4d would be parallel. The contours are
not parallel, indicating a minor frequency dependence of the inter-period correlations. For
example, the 0.2 Hz correlation cross-section in Figure 3-5d drops off more rapidly moving away
from the conditioning frequency and has a different overall shape than the cross-section

conditioned at 15 Hz. The broader correlations at high frequencies are the result of the log-scale
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smoothing window used on the EAS. Initially, the correlations were modeled independently of the
conditioning frequency with an exponential drop off in log-frequency space. The simplicity of this
approach had a few advantages. First, it guarantees to produce a positive definite covariance
matrix, which is a favorable feature for simulating realizations of ground motions. Second, a
simple model was a good starting point for evaluating the correlation in ground-motion
simulations. The frequency-independent model was a good fit to the empirical correlations on
average, but was generally too broad at low frequencies, and too narrow at high frequencies;
therefore, the total inter-frequency p. are fit with a slightly more complex, frequency-dependent
model. The frequency-dependent model allows for more robust evaluations of the simulations, and

for future applications of the model to incorporate correlations as similar to the data as possible.

Figure 3-6 shows the total p. contours (Figure 3-4d) in yet another manner; only the upper
triangular part of the symmetric correlation matrix is plotted. Each line in the top panel is the
empirical total correlation coefficients for one of 239 conditioning frequencies, indicated by the
frequency with correlation value 1. Each of these correlation contours are fit independently to
develop the correlation model. The bottom panel of Figure 3-6 show a subset of the total empirical
correlation coefficients, along with the empirical model. The model contours in the bottom panel
of Figure 3-6 are assigned different line weights subjectively to identify frequency ranges with

significantly different shapes.

The total p. empirical model takes the form given in Equations 3-8 through 3-11,
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pe,total,Model(fll fz) = tanh [A(fm)eB(fm)*fT + C(fm)eD(fm)*fr] (3 - 8)

_ fi
f = |ln(}72) (3-9)
fm = min(fi, f2) (3—-10)
if i =fa pe,total,Model(fler) =1 3-11)

where f; and f; are the two frequencies considered, tanh is the hyperbolic tangent, A, B, C, and D
are frequency-dependent constants, f, is the absolute value of the natural log-ratio of the two
frequencies, and f;, is the minimum of the two frequencies. The model in Equation 3-8 is a two-
term exponential decay with the natural logarithm of frequency. Two exponential terms are
required to model the shape of the correlation cross-sections (e.g. Figure 3-5d) which starts off
with a steep decay at frequencies very close to the conditioning frequency, and then flattens as the
log ratio of frequencies increases. Equation 3-8 includes the hyperbolic tangent operator because
the regression is performed on Fisher-transformed values of the correlation (Equation 3-5), which
results in approximately normally distributed variables, z. This transformation emphasizes the fit
to the higher correlation values, which are the priority for model accuracy. The Fisher
transformation is undefined for p. = 1, so the correlation model is set to be unity when f; = f,
(Equation 3-11). The frequency dependence of coefficients A, B, C, and D is shown in Figure 3-7

and values are given in the electronic supplement to this dissertation.

The total p. empirical model contours and cross-sections are shown in Figure 3-8. The empirical
model compares favorably with the empirical correlations, especially at high correlation values

which are emphasized in the regression using the Fisher-transformation (Equation 3-5).
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Figure 3-6. Top: Empirical total correlation coefficients for 239 conditioning frequencies. Bottom: A subset
of the total empirical correlation coefficients (solid lines), along with the model (dashed lines).
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Figure 3-8. Left: Empirical model p¢ ¢orq) contours. Right: Empirical model pe to1q; cross-sections (dashed
lines), compared with empirical cross-sections (solid lines).
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Model Application

The total p. empirical model is developed using the PEER NGA-West2 EAS database (Ancheta
et al., 2014), and is not found to have strong magnitude, distance, site parameter, or regional
dependence (discussed further below). Therefore, the model is applicable for crustal earthquakes
in active tectonic regions worldwide. The model is applicable for rupture distances of 0 — 300 km,
M 3.0 - 8.0, and over the frequency range 0.1 — 24 Hz. At frequencies outside this range, the model
has not been tested. If extrapolation is required, using the values for coefficients A, B, C, and D at
either f = 0.1 or f = 24 Hz is recommended, for extrapolating to lower and higher frequencies,
respectively. Tables for the total p. model coefficients and covariance matrices are provided in the

electronic supplement to this dissertation.

Model Comparison

In this section, the model is compared with two other empirical models for p,.

Comparison with Baker and Jayaram (2008)

Baker and Jayaram (2008) developed an inter-period correlation model for within-event € based
on PSA. Using an updated database, Baker and Bradley (2017) confirmed that the updated
correlations were largely consistent with the Baker and Jayaram (2008) model. In PSA GMMs, the
within-site and between-site residuals are usually combined when within-event correlations are
computed, and the within-event standard deviation is often significantly larger than the between-
event standard deviation, so the total correlations mostly reflect the within-event correlations

(Stafford, 2017). The Baker and Jayaram (2008) contours derived from within-event € for PSA are
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shown in Figure 3-9. An important difference between the contours derived from EAS (Figure 3-
4) and those from PSA is the behavior at high frequencies. The PSA contours in Figure 3-9 broaden
substantially at high frequencies (short periods); this is because of the wide frequency range that
influences the short-period PSA, as discussed previously. The EAS contours do not behave this
way because the Fourier transform operation at each frequency bin is independent of neighboring
bins. For frequencies below about 10 Hz, the Baker and Jayaram (2008) model is independent of

the conditioning frequency.

Ppsa Contours

Frequency, F2 (Hz)

107! 10° 10t 10?
Frequency, F1 (Hz)

Figure 3-9. Baker and Jayaram (2008) PSA correlation model contours, developed from the within-event
residuals of NGA-West GMMs.

Comparison with Stafford (2017)

Stafford (2017; S17 hereafter) used a subset of the NGA-West1 database to develop models for
the inter-frequency p,. and variance of FAS. S17 modeled the FAS using two approaches: first by
adapting the Yenier and Atkinson (2015) FAS model to the data, and second, by performing a

regression to the data with a simple GMM at each frequency independently. Like this study, S17
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partitioned the residuals into between-event, between-site and within-site components. S17 used
unsmoothed FAS ordinates in the model development, which is an important distinction from the
approach presented here and has an effect on the resulting models, as shown below. Additionally,
the S17 model used both as-recorded horizontal components of the ground-motions, as opposed to

an orientation-independent horizontal component, such as the EAS used here.

Figure 3-10 summarizes the S17 model for the total p,. of the unsmoothed FAS over the frequency
range 0.1 — 24 Hz, assuming a source corner frequency of 0.08 Hz. In panel (b), the S17 total p,
model cross-sections are compared with the total p. model developed here. The S17 total p, model
features more frequency dependence and at high frequencies, has a much stronger decay of the
correlations in the vicinity of the conditioning frequency than the model developed here. The large
differences in high frequency p. models are likely the result of the different smoothing techniques
employed. The smoothing averages the EAS in log-spaced frequency bands, which increases the
correlation between frequencies. As mentioned previously, the smoothing is done to maintain
consistency with the PEER database and with models developed in other studies using the PEER
database. At frequencies below 0.2 Hz, the S17 exponential decay near the conditioning frequency
is slightly weaker than the model developed here, but the differences are smaller. These differences
can be attributed to the combination of differences described above: ground-motion component,

database, smoothing technique, and ground-motion model used for computing the residuals.

S17 observed minor magnitude dependence of the between-event p., and attributed these to the
variations in the source corner frequency for events of the same magnitude, concluding that larger
magnitude events should exhibit stronger inter-frequency correlations over a broader range of
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frequencies than smaller magnitude events. Magnitude dependence is not incorporated into the
total correlation model developed here; the reasoning behind this is described in the following

section.

stafford (2017) p, .,
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Figure 3-10. Left: Stafford (2017) petotqr contours using f. = 0.08 Hz. Right: Comparison of the two
Pe total Model cross-sections at five conditioning frequencies.

Dependence of the Correlation on Data Subsets

There have been conflicting conclusions published about the sensitivity of response spectra
correlation coefficients to the ground-motion database subsets. Azarbakht et al. (2014), using PSA
and the NGA-WI1 database, concluded that the within-event correlation coefficients had
meaningful dependencies on the causal magnitudes and distances of the recordings. This
conclusion differs from those made by several other published studies, including Baker and
Cornell (2005), Baker and Jayaram (2008), Baker and Bradley (2017), and Carlton and
Abrahamson (2014). Baker and Bradley (2017) investigated the dependence of PSA inter-period

correlations on binned data subsets of the PEER NGA-West2 database. They concluded that the
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correlations show no systematic trends with causal magnitude, distance, or Vg3,. This was the same
conclusion made by Baker and Jayaram (2008), which was developed using the NGA-Westl
database. Carlton and Abrahamson (2014) concluded that the robustness of generic correlation
models for PSA is a result of their dependence on spectral shape rather than tectonic region.
Stafford (2017), working with unsmoothed FAS, found weak magnitude dependence on the
between-event inter-period correlations, attributing these to the variations in the source corner
frequency for events with the same magnitude. Stafford (2017) did not observe systematic
dependence of the between-site or within-site residual correlations on causal magnitude or

distance.

To investigate the dependence of the correlations on different seismological parameters, the total
pe of the EAS is recalculated for subsets of the data. The subsets are created by binning residuals
based on magnitude, distance, V3, and earthquake region. The complete list of residual subsets
analyzed is given in Table 3-1. For each data subset listed in Table 3-1, p. for each component of
the residuals is calculated and the p. contours and cross-sections are reviewed. As expected,
deviations from the full database p. occur, but no systematic differences are found based on this

qualitative assessment.
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Table 3-1. Data subsets analyzed to investigate p. dependence on seismological parameters.

Parameter Bins
M <4.0,4.0-5.0, 5.0-6.0, 6.0-7.0,> 7.0
R, (km) 0-15, 15-30, 30-50, 50-75, 75-100
V30 (m/s) <300, 300-500, 500-700, > 700
Region Western North America (WNA; primarily California),
All non-WNA, Japan, Taiwan, China, Mediterranean

The dependence is also investigated more methodically by following the procedure taken by Baker
and Bradley (2017). With this routine, the total p. from each data subset is calculated using the
GMM residuals from that subset. The total p, for the subset is then compared with the p. from the
full database. The results of this procedure are summarized in Figure 3-11, where the total
empirical p, for four frequency pairs are shown for the 20 subsets from Table 3-1. In Figure 3-11,
the full database total p. for each frequency pair is shown with the solid, horizontal line, with
dashed lines representing the lower and upper bounds for 95% confidence intervals of these
coefficients (Kutner et al., 2004). The solid circles are the total p. calculated for each indicated
data subset, and the triangles indicate 95% confidence intervals of those coefficients. The 95%
confidence intervals represent the statistical uncertainty in the correlation coefficients due to the
finite number of samples, and the standard deviation of the samples. If the confidence intervals of
two groups do not overlap, then the differences in the correlation coefficients of the two groups

are statistically significant at the 95% confidence level.
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Figure 3-11. Total p. for four frequency pairs (identified in the legend) for the 20 data subsets from Table
1. The full database total p. for each frequency pair is shown with the solid, horizontal line,
and dashed lines represent the lower and upper bounds for 95% confidence intervals of these
coefficients (Kutner et al., 2004). The solid circles are the total p. calculated for each indicated
data subset, and the triangles indicate 95% confidence intervals of those coefficients.

Figure 3-11 panel (a) shows the magnitude binned results, which reveal no systematic trends. The
largest magnitude bin suffers from the smallest sample size, especially for the between-event
terms, and has the largest variations from the full database p.. But at each frequency pair the 95%
confidence intervals for the binned data overlap with those for the full database, indicating that the
two are not statistically significantly different for this bin. Panel (b) shows the distance binned
results, which also have overlapping confidence intervals for each frequency pair and bin,
revealing no apparent dependence of p. on distance. Panel (c) shows the V3, binned results. The

Vs30 > 700 m/s bin has the largest deviations from the full database, but no systematic, statistically
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significant dependencies are observed. Panel (d) shows the results for the regional data subsets,
where deviations from the full database are stronger than any of the other data subsets examined.
Panels a, b, and ¢ from Figure 3-11 are from the CA model residuals, but correlations in panel d
are from residuals for a larger subset of the full NGA-West2 database. The regional subsets have
overlapping confidence intervals with the full database for each frequency pair except for the Japan
subset coefficient at 1 and 4 Hz. The WNA, all non-WNA, Japan, and Taiwan regions contain a
substantial number of events and recordings in this analysis. The China and Mediterranean regions
have the smallest sample sizes, as indicated by the wide confidence intervals, such that their
deviations from the full database correlation coefficients are likely not significant, but this should

be investigated in the future using more data for each region.

Based on this analysis of the data subsets, no conclusive, systematic relationships are detected
between p. and the seismological parameters reviewed. The largest differences in correlation
coefficients occur at widely spaced frequencies, when p,. themselves are low. This is an expected
feature, because of the heteroskedastic (non-constant standard deviation) nature of the correlation
coefficients. Correlation coefficients with values close to zero have a larger standard deviation
than coefficients with values close to one, meaning that the confidence intervals for low correlation
coefficients are wider. This effect can be observed in Figure 3-11 panel (a), where the 95%
confidence intervals are tight for the 0.9 and 1 Hz pair coefficient, and wide for the 0.3 and 5 Hz
pair coefficient. As a result, differences between p. at low values are not usually significant.
Additionally, in practice, the frequency ranges with high correlations are the most important, since
these are related to the width of peaks and troughs in the spectra, and the wider frequency pairs

with low correlations are not as impactful. Therefore, it is neither practical nor necessary to include
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dependencies on the reviewed seismological parameters in the inter-frequency EAS correlation
model developed here. This conclusion agrees with the Baker series of conclusions for PSA (Baker
and Cornell, 2005; Baker and Jayaram, 2008; Baker and Bradley, 2017) and with Carlton and

Abrahamson (2014).

Correlation of select well-recorded events

Since no systematic relationships between p. and magnitude, distance, or site parameter are
observed, the inter-frequency correlation should approximately agree with the empirical model for
a given event or set of events. To test this, the residuals from nine events identified by the SCEC
BBP validation project (Dreger et al., 2015) are used to calculate the inter-frequency p. and
compare with the empirical model. The SCEC BBP is a collaborative software development
project, with the objective to integrate complex scientific codes for generating broadband ground-
motion simulations for earthquakes. A key part of the SCEC process is to validate the simulations
against data from well-recorded earthquakes, as described in the Dreger et al. (2015) validation
exercise. The nine events from active crustal regions for validating the simulations against data
are: 2008 Chino Hills, 2007 Alum Rock, 1987 Whittier Narrows, 1986 North Palm Springs, 1994

Northridge, 1989 Loma Prieta, 1992 Landers, 2000 Tottori, and 2004 Niigata (Goulet et al., 2015).

Figure 3-12a shows the p¢ ;4¢q; contours derived from residuals for these nine events, and Figure
3-12b compares the porq; cross-sections with the empirical model. Figure 3-12 supports the
hypothesis that p ;,:4; should approximately agree with the empirical model for a given event or

set of events. In this case, departures from the model are observed, especially for the cross-section
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conditioned at 0.2 Hz, but the 95% confidence bounds on p, ¢4, indicate that differences are not

statistically significant because these enclose the model over most frequencies.

Empirical Protal for 9 Validation Events Cross-Sections for 9 Validation Events

total

F2 (Hz)

0.1 0.1 9 Events, A
| 9 Event 95% CI | .~
- - -Empirical Model
0 o B . . [ Y,
107! 10° 10!
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Figure 3-12. Left: Empirical pe ¢otq1 contours derived from the nine SCEC validation events (Goulet et al.,
2015). Right: pe totar cross-sections from the SCEC events (solid lines), with 95% confidence
intervals for pe torar (dotted lines) compared with empirical model for pe torq1 (dashed lines).

Conclusions

The empirical model for the inter-frequency correlation of the EAS developed in this study is
applicable to shallow crustal earthquakes in active tectonic regions worldwide, for rupture
distances of 0 — 300 km, magnitude of 3.0 — 8.0, and frequency of 0.1 — 24 Hz. This correlation
model can be used to define the inter-frequency correlation in stochastic ground-motion simulation
methods. It is also appropriate for use in evaluation and validation studies of the inter-frequency
correlations from numerical simulations for ground motions that also use the standard EAS

approach for smoothing the FAS. These are the topics of Chapters 4 and 5 of this dissertation.
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Chapter 4:
Evaluation of the inter-frequency correlation of ground motion

simulations
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Abstract

It is shown that the inter-frequency correlation of epsilon (p.) is an essential component of ground
motions for capturing the variability of structural response that is needed in seismic fragility and
seismic risk studies. To perform this demonstration, large suites of scenario ground motion
simulations are generated using the point source stochastic method. Two compatible suites of
simulations are developed; one suite without any imposed inter-frequency correlation, and one
with Fourier amplitude € sampled from a multivariate normal distribution with covariance
specified by the empirical model developed in Chapter 3. It is illustrated how the effect of p,
propagates through the structural response and into to seismic risk calculations. Without the
adequate inter-frequency correlation of ground motions, variability in the structural response may
be under-estimated. This leads to structural fragilities which are too steep (under-estimated

dispersion parameter ) and propagates through to non-conservative estimates of seismic risk.

To assess the current state of multiple existing ground motion simulation methods, their inter-
frequency correlations are compared with empirical models. None of the six finite-fault simulation
methods tested adequately capture the inter-period correlations over the entire frequency range
evaluated, although several of the methods show promise, especially at low frequencies. Using the
correlation of the Fourier spectra provides the developers of the simulation methods better
feedback in terms of how they can modify their methods that is not clear when using response
spectra comparisons. Based on the relative differences in the correlations of the Song (2016) source
method, it appears that changes to the rupture generator may be the most promising approach to

modifying the long period inter-period correlations.

121



Introduction

Ground-motion models (GMMs, also known as ground-motion prediction equations, GMPEs, or
attenuation models) are used for estimating the level of ground shaking at a site, including the
uncertainty in that level, based on earthquake magnitude, source-to-site distance, local site
conditions, and other seismological parameters. Among other applications, GMMs are often used
in probabilistic seismic hazard analyses (PSHA), including those performed to develop the U.S.
Seismic Design Maps (ASCE, 2016). GMMs can be developed using recorded ground-motions,

using numerical earthquake simulations, or a combination of both approaches.

Empirical GMM residuals are the difference, in logarithmic space, between the recorded ground
shaking and the median ground shaking predicted by the GMM. These residuals are typically
partitioned into between-event residual (6B), and within-event residuals (6W), following the
notation of Al Atik et al., (2010). For large numbers of recordings per earthquake, the between-
event residual is approximately the average difference in logarithmic-space between the observed
Intensity Measure (IM) from a specific earthquake and the IM predicted by the GMM. The within-
event residual (6W) is the difference between the IM at a specific site for a given earthquake and
the median IM predicted by the GMM plus §B. By accounting for repeatable site effects, SW can
further be partitioned into a site-to-site residual (6525) and the single-station within-event residual

(6WS) (e.g. Villani and Abrahamson, 2015).

122



The residual components §B, §S2S and WS are well-represented as zero-mean, independent,
normally distributed random variables with standard deviations 7, ¢s,¢ and ¢y, respectively (Al
Atik et al., 2010). These GMM residual components are converted to epsilon (eg, €555, and €y5)
by normalizing the residuals by their respective standard deviations. Because of the normalization,
the random variables €g, €5,5, and €, 5 are represented by standard-normal distributions (mean=0,
variance=1). If the total residual is used, then the resulting €;,¢,; Will, in general, not have zero

mean due to the uneven sampling of recordings per earthquake in the data set.

For a given recording, the values of € at neighboring periods (T) are correlated. For example, if a
ground motion is stronger than average at T=1.0 s, then it is likely to also be stronger than expected
at nearby periods, e.g. T=0.8 s or T=1.2 s; however, for a widely-spaced period pair (e.g. T=10.0
s compared with T=1.0 s), the € values will be weakly correlated. The inter-period correlation

coefficient, p, quantifies the relationship of € values between periods for a given recording.

The correlation coefficient of two random variables is a measure of their linear dependence. In this
case, € calculated from a large set of ground motions at different frequencies (f) are random
variates. The correlation coefficient between €(f;) and €(f,) can be estimated using a maximum
likelihood estimator, the Pearson-product-moment correlation coefficient, p (Fisher, 1958). The

correlation coefficient for a sample of € at frequencies f; and f, is given by Equation 4-1,

cov(e(f). e(f3)) _ () — e()(e(r) — e(f)
PR s () - G0 | Ba(e ) — €G)°

(4-1

Pe(r)e(fz) =
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where cov is the covariance, o is the standard deviation, n is the total number of observations, i is

the i" observation of €, and €(f;) and €(f,) are the sample means of € at frequencies f; and f5,
respectively. € equal to zero indicates that the GMM is unbiased. The relation for p(f,y e(r,) given
in Equation 4-1 is reciprocal; the correlation coefficient between two given frequencies is the same
regardless of which frequency is the conditioning frequency. To account for all residual terms, the

total correlation is calculated as Equation 4-2,

Pe,total(fl:fz) =
ps(f1, £)T(F)T(2) + ps2s(fi 2) Psas (1) Ps2s(F2) + pws (1 [2)Dss (F1) Pss (f2)
o(f)a(f2)

(4-2)

where pg (fi, f>) is the correlation of the normalized between-event residuals, pg,s(fi, f>) is the
correlation of the normalized site-to-site residuals, and pys(fi, f>) is the correlation of the

normalized single-station within-event residuals.

Using a database of residuals, the calculation of pe(f,) ¢(r,) can be repeated for every frequency
pair of interest. Figure 4-1 shows a graphical representation of this step at three example frequency
pairs. The resulting correlation coefficients for each pair of frequencies can be saved as tables (e.g.
Abrahamson et al., 2013; Al Atik, 2011; Akkar et al., 2014; Azarbakht et al., 2014; Jayaram et al.,
2011), or can be empirically modeled. For modern GMMs, models of the correlation of € are
commonly created for PSA (e.g. Baker and Cornell, 2006; Baker and Bradley, 2017; Baker and
Jayaram, 2008; Cimellaro 2013; Goda and Atkinson, 2009; Abrahamson et al., 2013). Recently,
correlation models for € from Fourier amplitude spectra (FAS) have also been developed (e.g.

Stafford, 2017; and Chapter 3 of this dissertation).
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Figure 4-1. € values at pairs of frequencies calculated from a database of ground motions, exhibiting the
correlation dependent on frequency spacing. Left: f; = 0.2 Hz and f, = 5.0 Hz. Middle: f; =
0.2 Hz and f, = 0.3 Hz. Right: f; = 0.2 Hz and f, = 0.2 Hz

Physical Meaning and Relevance of p.

Because larger than average ground motions tend to be from local spectral peaks and lower than
average ground motions tend to be from local spectral troughs, the parameter € is an indicator of
the peaks and troughs at a given frequency in a spectrum. And since p, is a measure of the linear
dependence of € between two frequencies, it follows that p. characterizes the relative width of
these extrema. For example, very high p,. (values close to one) over broad frequency pairs indicate
wide peaks and troughs in the spectra; leading to smoother undulating spectra. Conversely, very
low p. (values close to zero) between neighboring frequency pairs indicate very narrow peaks and

troughs; leading to ‘noisy’ looking spectra.

The generic term ‘spectra’ can refer to either PSA or FAS. PSA spectra are the peak response from
a single degree of freedom oscillator system. PSA spectra are influenced by a range of frequencies,

and the breadth of that range is dependent on the oscillator period (Chapter 2) and on the damping.
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The FAS provides a more direct representation of the frequency content of the ground motions,
and because the Fourier transform is a linear operation, the FAS is a much more straightforward
representation of the ground motion and is better understood by seismologists. This simpler
behavior makes the FAS preferable over PSA for incorporating inter-period correlation into

numerical methods for ground-motion simulations, and it is the IM adopted in this study.

Since p. is a measure of the width of spectral peaks, it has relevance in dynamic structural
response. For linear response, a structure will be sensitive to the frequency content over a range of
frequencies about the natural frequency of the structures. For the uncorrelated case, if the € value
at the natural frequencies is a high positive value (corresponding to a peak), the values of € at the
nearby frequencies will be randomly high or low so the response of the structure will increase a
small factor; however, for the correlated case, the values of € at the nearby frequencies will tend
to also be positive values so the response of the structure will increase a larger factor relative to
the uncorrelated case. During nonlinear seismic response, the effect of the correlation can be even
greater than for linear response. For nonlinear response, structures can experience softening
characterized by elongation of their natural vibration period (Lin et al., 2008; Bradford 2007). This
occurs when damage to the structural elements leads to large strains which reduce the effective
stiffness and increases effective damping. As a structure softens, its effective fundamental period
increases and the response will depend on if the structure is softening into a peak or a trough in
the spectrum. For the correlated case, the chance of softening into a peak or a trough will depend
on the breadth of a ground motion spectral peak or trough, thereby affecting the structural response.

The aggregate effect is the variability in structural response is higher for ground motions with
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realistic p. than for ground motions with unrealistically low p.; this point is demonstrated in the

following sections of this chapter.

Chapter Organization

In this chapter, the effect on structural fragilities of p. is demonstrated, and the p. in existing
ground-motion simulation methods is evaluated. First, a short summary of the four main
components of Pacific Earthquake Engineering Research Center’s (PEER) Performance Based
Earthquake Engineering (PBEE) framework is presented, and this framework is used to define
structural risk in terms of structural fragility and seismic hazard. A method for developing
structural fragilities from ground motion simulations is described, and using a generic example, p,
is shown to be a critical feature of ground motions that should be considered as a validation
parameter for numerical simulations. A method is developed for generating simulated ground
motions with appropriate p.. An example of seismic risk for a generic site in southern California
using this ground-motion simulation method is presented and compared with results using the same
simulation method but without the correlation. For this example, the propagation of p. to the
structural response variability and then into seismic risk is illustrated. Finally, the inter-frequency
correlations of multiple existing ground-motion simulation methods are evaluated and compared

with empirical models for the correlation.

Structural Risk in Performance Based Earthquake Engineering

Following Moehle and Deierlein (2004), PEER’s probabilistic framework for PBEE is separated

into four main analysis steps: hazard analysis (characterized by a ground motion Intensity
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Measure, IM), structural analysis (characterized by an Engineering Demand Parameter, EDP),
damage analysis (characterized by Damage Measure, DM), and loss analysis (characterized by a
Decision Variable, DV). Using this framework, one can focus solely on the first two analysis steps
to estimate the EDP hazard, defined as the mean annual rate of exceeding a given structural

response level. The EDP hazard is given by Equation 4-3,

A(EDP > z) = [ P(EDP > z|IM = x) |_d’1(’d’:’c>x>

dx 4-3)

where A(EDP > z) is the mean annual rate of exceeding EDP value z. P(EDP > z|IM = x) is the
structural fragility, which is the probability of exceeding EDP value of z given IM = x. A(IM >
x) is the mean annual rate of exceeding IM value x, and dA is the rate of occurrence of IM value
x, which is the slope of the IM hazard curve. Therefore, the EDP hazard for exceeding a specified
value z is comprised of two quantities: the structural fragility, and the ground motion hazard,

integrated over all relevant IM levels, x.

In this chapter, the selected IMs are 5% damped pseudo-spectral acceleration (PSA) and Fourier
amplitude spectra (FAS), and the selected EDP is the maximum interstory drift ratio (MIDR), but
it is noted that the EDP risk framework (Equation 4-2) is applicable to other appropriate IMs and
EDPs. As interstory drift is commonly adopted as the EDP, it is common to refer to the EDP hazard

as drift hazard.
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Structural Risk using Ground Motion Simulations

Fragilities Developed from Simulations

A fragility function specifies the probability of a structural consequence (EDP) as a function of
the ground motion intensity (IM). Fragility functions can be obtained using the Incremental
Dynamic Analysis (IDA) procedure as a means of integrating structural simulations and ground
motions (Moehle and Deierlein, 2004; Baker, 2013). With this procedure, using a suite of ground
motions, structural response calculations are carried out in which the building is subjected to the
input ground motions having a specified IM amplitude, and the fraction of the ground motions
exceeding the specified EDP are counted. The process is repeated at increasing IM levels to obtain
the probability of exceeding the EDP at discrete IM amplitudes. A lognormal cumulative

distribution function can be fit to the probabilities, e.g Equation 4-4,

In(x)—In ()

Pri(EDP > z|IM = x) = @[ 3 ] 4-4)

where Py (EDP > z|IM = x) is the fitted fragility function, ® is the CDF of the standard normal
distribution, « is the IM with median fragility, S is the logarithmic standard deviation of the CDF,
and a and S are estimated from the IDA results. This method is demonstrated in this chapter. An
alternative to IDA is the Multiple Stripe Analysis (MSA) method, where ground motions selected
specifically for the IM amplitude are analyzed, instead of scaling one set of ground motions for
multiple IM amplitudes (Baker, 2013). MSA uses scenario-specific ground motions for each IM

level, but because the hazard at long return periods is usually driven by increasing epsilon, not
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magnitude, the IDA approach has merit. The fundamental impact of the correlation can be

demonstrated using an IDA, so this is the approach taken in the following example.

Incorporating p, into Ground Motion Simulations

The point source (PS) stochastic method for simulating earthquake ground motions, which is based
on the pioneering work of Brune (1970), Hanks and McGuire (1981) and Boore (1983), among
others, has been developed and refined over several decades. David Boore formalized the method
and extended it to the simulation of acceleration time series (Boore, 1983; Boore, 2003). With the
Boore (2003) method (Boore03 hereafter), a simulated time series is produced using a
seismological model of the Fourier amplitude spectrum, and assuming the spectrum is distributed
with random phase angles over a time duration related to the earthquake magnitude and the
distance between the source and site. Boore (2003) gives a comprehensive description of the

method; only a brief summary is provided here.

The classic procedure starts by generating normally distributed noise (Figure 4-2a) and applying a
time-domain taper with duration consistent with the scenario being considered (Figure 4-2b). The
tapered noise is transformed into the frequency domain (Figure 4-2¢), and the FAS of the noise is
normalized by the square root of the mean power, such that the FAS has mean power of one (Figure
4-2d, showing the natural logarithm of these values). The normalized FAS is then shaped to the
PS Fourier amplitude spectrum of the considered scenario (Figure 4-2¢), and inverse transformed

to the time domain using the phase angles from the tapered time domain noise (Figure 4-2f).

130



g
G

4 4
2 2 5l
o . E
g 0 @ 0
[
i l S 5l
'_
_4 L L L 1 1 _4 L L L L 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30
time (s) time (s)
(©)] , )
v 10 i 4 .
2 2t I ‘
= _ |
glOL A fw‘ﬂ‘\ *\”M ’
< woop/ N L pj“f‘lm‘m.q‘“\MV ‘M h
31072¢ ] / \/ | W W.
5 -2r \
£
1073 : ' -4 : ‘
107 10° 10! 102 107 10° 10! 102
Freq (Hz) Freq (Hz)

T
3

107
_ 200f
— <
Q » 1001 i
€ 10%F g byt I
L CANNY VAT EYRR R I
) < [ |
= g -100¢ ‘ ‘
107
<200}
101 10° 10! 102 0 5 10 15 20 25 30
Freq (Hz) time (s)

Figure 4-2. Illustration of the Boore (2003) procedure for simulating acceleration time series using the
point-source stochastic method. Each sub-panel is described in the text.

The Boore03 procedure filtered white noise in the time-domain, resulting in € with no correlation
between frequencies. To generate a simulated time series with realistic inter-period correlation,
the Boore03 procedure can be modified as follows. First, a symmetric, positive definite covariance
matrix () for the inter-frequency petorq; Of FAS is needed (e.g. the one from Chapter 3). This
matrix is factorized using the Cholesky decomposition ¥ = LLT, where L is a lower triangular
matrix (Seydel, 2012). Then the zero-mean correlated random variables Y can be calculated as
Y = LZ, where Z are independent random variables drawn from a standard normal distribution.

The random variables Y are then normally distributed with zero mean and covariance matrix X. In
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step d from Figure 4-2, € values are replaced with correlated random numbers sampled in this
fashion. The sample € is scaled by a standard deviation equal to 0.65 (In units). The value of 0.65
is consistent with the standard deviation of the FAS that results from the Boore03 procedure
(Figure 4-2d), which is not sensitive to the time-domain variance of input white noise (Figure 4-
2b). The scaled € are converted to normalized FAS by taking their natural exponent. The correlated
€ are standard-normally distributed in natural logarithm space, so the normalized FAS are log-
normally distributed. For a log-normally distributed variable X, the first moment (mean) is given

by Equation 4-5 (Kenney and Keeping, 1951):

1
E[X] = eteta% (4 — 5)

where u, and o, are the mean and standard deviation of the natural logarithm X. In this application,
Ue = 0. The normalized FAS need to have unit mean so that implementing the correlation does
not change the mean amplitude of the simulations (over a suite of realizations) with respect to the
unmodified simulation method. Therefore, to get normalized FAS with mean equal to one, these

must be scaled by the adjustment factor given in Equation 4-6.

(4—-6)

With the imposed value of g, = 0.65, the adjustment factor SF = 0.8096. Finally, the normalized
and adjusted FAS are scaled by the Fourier amplitude spectrum of the considered scenario (Figure

4-2¢), and the Boore03 recipe is continued to generate time series with realistic inter-frequency p,
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of FAS. This procedure for creating simulated time series with realistic inter-period correlation is

similar to the method described in Stafford (2017).

Using these modifications, two simulation procedures arise: the original Boore03 method and the
Boore03 method modified to include the inter-period correlation of epsilon. An individual
realization of each procedure results in a pair of compatible acceleration time series. Both have
similar phasing, duration, frequency content, and amplitudes. Individual realizations of correlated
€ may be positive or negative for frequency bands, but as the sample size is increased, the sampled
€ have the intended standard-normal parameter values. Therefore, with a sufficient sample size,

the median FAS or PSA of a simulated scenario should be the same for both procedures.

Example Application

In the following example, structural fragilities are developed using an IDA with two sets of ground
motions created using the two simulation procedures described in the previous section. The first
set of ground motions has near zero inter-period correlation and the second set has realistic inter-
period correlation. Suites of 500 uncorrelated and correlated ground motions are developed using

the same point source Fourier amplitude spectrum as the basis for the ground motion amplitudes.

Both suites of simulations have similar ground motion distributions in FAS space (approximately
0.65 In units), as shown in Figure 4-3 and Figure 4-4, respectively. The PSA is calculated directly
from the acceleration time histories, which are obtained by performing the inverse Fourier
transform. On the right side of Figure 4-3 and Figure 4-4, the random vibration theory (RVT)

spectrum derived from seismological parameters consistent with the point source spectrum is
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plotted (Boore and Thompson, 2012). The median PSA of the suite of 500 ground motions closely

matches the RVT spectrum in both cases.
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Figure 4-3. A suite of 500 uncorrelated ground motion simulations for a M7.0 scenario at 30 km. Left: FAS
realizations in blue, and the point source scenario spectrum in black. Right: PSA spectra

realizations in red, and the RVT spectrum in black. One realization is identified with bold line
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Figure 4-4. Like Fig. 3, but using the correlated ground motion simulations procedure.

Although they have the same median, Figure 4-3 and Figure 4-4 illustrate the substantial

differences in the distribution of PSA between the uncorrelated and correlated ground motion sets.
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This happens because PSA spectra are influenced by a range of frequencies. As described
previously, considering broad (highly correlated) spectra, the gr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>